		Flush	Grid
	in	mm	
Pitch	1.00	25.4	
Minimum Width	1.5	38	
Width Increments	0.25	6.4	
Opening Size (approximate)	0.2 × 0.2	5 × 5	
Open Area	31	%	
Hinge Style	Ор	en	
Drive Method	Center	-driven	a second s
Product	Notes		
 Contact Intralox for precise stock status before designi a belt. Lightweight, relatively strong surface. Smaller pitch reduces chorda plate gap. Uses headed rods. For more material selections performance, see Series 900 styles. 	a belt measure ng equipment belt with smoo al action and tra and stronger b and Series 110		
Additional Information • See "Belt Selection Process" (page 5) • See "Standard Belt Materials" (page 9) • See "Special Application Belt Materials" (page 9) • See "Eriction Factors" (page 13)			0.172" 1.00" NOM. 1.00" NOM. 1.00" NOM. 1.00" NOM. 0.344" (4.4 mm) (25.4 mm)

	Belt Data						
Belt Material	Standard Rod Material Ø 0.18 in	BS Belt Strength		Temperati (contin	W	Belt Weight	
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene	Polypropylene	300	450	34 to 220	1 to 104	0.54	2.64
Polyethylene	Polyethylene	200	300	-50 to 150	-46 to 66	0.58	2.83
Acetal	Polypropylene	600	890	34 to 200	1 to 93	0.78	3.81
HSEC Acetal	Polypropylene	400	595	34 to 200	1 to 93	0.78	3.81
Acetal ^a	Polyethylene	550	820	-50 to 70	-46 to 21	0.78	3.81

a. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

		Raise	l Rib
	in	mm	
Pitch	1.00	25.4	
Minimum Width	1.5	38	
Width Increments	0.25	6.4	
Opening Size (approximate)	0.2 × 0.2	5 × 5	A Minson Maria
Open Area	31	%	
Product Contact Area	28	%	
Hinge Style	Ор	en	
Drive Method	Center	driven	
Product	Notes		
 Contact Intralox for precise stock status before designing a belt. Smooth upper surface with clused with finger transfer plate tippage and hang-ups. Uses headed rods. For more material selections performance, see Series 900 	belt measure ng equipment osely spaced r es, eliminating and stronger b Raised Rib.		
Additional Information			1.00" NOM. 1.00" NOM. 1.00" NOM. 1.00" NOM. (25.4 mm) (25.4 mm) (25.4 mm) (25.4 mm)
 See "Belt Selection Process" (page 5) See "Standard Belt Materials" (page 9) See "Special Application Belt Materials" (page 9) See "Friction Factors" (page 13) 			(9.9 mm) (9.9 mm) (14.3 mm)

intralox

Belt Data							
Belt Material	Standard Rod Material Ø 0.18 in	BS	Belt Temperat Strength (conti		ure Range nuous)	W	Belt Weight
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene	Polypropylene	300	450	34 to 220	1 to 104	0.82	4.00
Polyethylene	Polyethylene	200	300	-50 to 150	-46 to 66	0.88	4.29
Acetal	Polypropylene	600	890	34 to 200	1 to 93	1.20	5.86
Acetal ^a	Polyethylene	550	820	-50 to 70	-46 to 21	1.20	5.86

a. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

Sprocket and Support Quantity Reference							
Belt Wic	Ith Range ^a	Minimum Number of	Ŵ	/earstrips			
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway			
2	51	1	2	2			
4	102	1	2	2			
6	152	2	2	2			
7	178	2	3	2			
8	203	2	3	2			
10	254	2	3	2			
12	305	3	3	2			
14	356	3	4	3			
15	381	3	4	3			
16	406	3	4	3			
18	457	3	4	3			
20	508	5	5	3			
24	610	5	5	3			
30	762	5	6	4			
32	813	7	7	4			
36	914	7	7	4			
42	1067	7	8	5			
48	1219	9	9	5			
54	1372	9	10	6			
60	1524	11	11	6			
72	1829	13	13	7			
84	2134	15	15	8			
96	2438	17	17	9			
120	3048	21	21	11			
144	3658	25	25	13			
For Other Widths, Use Odd Number of Sprockets ^c at Maximum 6 in. (152 mm) & Spacing		d Number of Sprockets ^c at 52 mm) Ç Spacing	Maximum 6 in. (152 mm)	Maximum 12 in. (305 mm) Ç Spacing			

a. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 0.25 in. (6.4 mm) increments beginning with minimum width of 1.5 in. (38 mm). If the actual width is critical, consult Customer Service.
 b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.

b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.
c. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 410 for lock down location.

intralox

							Molde	ed Spro	ocket		
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	ŀ	Available E	Bore Size	S	
Teeth (Chordal	Pitch	Pitch	Outer	Outer	Hub Width	Hub	U.S.	Sizes	Metric	c Sizes	
Action)	Dia. III.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm	
6 (13.40%)	2.0	51	2.1	53	0.75	19		1.0			
11	3.5	89	3.7	94	0.75	19		1.0		40	
(4.05%)								1.5			
19 (1.36%)	6.1	155	6.3	160	1.25	32		1.5		40	
								2.5		60	
										65	

Split Metal Sprocket

No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	Bore Size	S
Teeth (Chordol	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S. 5	Sizes	Metric	: Sizes
Action)	Dia. III.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm
11 (4.05%)	3.5	89	3.7	94	1.5	38		1.5		40
19	6.1	155	6.3	160	1.5	38		1.5		40
(1.36%)								2.5		60
										65

Streamline/No-Cling Flights

Available F	light Height	Available Materials			
in.	mm	Available Materials			
1.5	38	Polypropylong Polyothylong Acotal			
		rolypropylene, rolyethylene, Acetai			

Note: Flights can be cut down to custom heights with a minimum height of 0.25 in (13 mm).

Note: No fasteners are required.

Note: One side of the flight is smooth (Streamline) while the other is ribbed vertically (No-Cling).

Note: Flights can be provided in linear increments of 1 in. (25 mm).

Note: The minimum indent (without sideguards) is 0.5 in. (13 mm).

		Sideguar	rds				
Availab	le Sizes	Available Materiala					
in.	mm						
2	2 51 Polypropylene, Polyethylene, Acetal						
Note: Sideguard containment, the part of the belt, f Note: The minim Note: The stand in. (2 mm). Note: When goir opening a gap at fall out. The side tooth sprocket	Is are used with F ey are of the stand astened by the hi num indent is 0.75 ard gap between ng around the 6 ar t the top of the sid eguards stay comp	lush Grid belts to ensure product lard overlapping design, and are an integral nge rods. is in. (19 mm). the sideguards and the edge of a flight is 0.06 and 11 tooth sprockets, the sideguards fan out, leguard which might allow small products to obletely closed when wrapping around the 19					

Note: Standard sideguard orientation is angled inward toward the product. If needed, sideguards can be angled outward toward the conveyor.

I

intralox

Finger Transfer Plates

Available	e Widths	Number of	Available Materials						
in.	mm	Fingers							
4	102	16	Acetal						
Note: Designed a product transfer a Note: The finger	Note: Designed to be used with Series 100 Raised Rib belts to eliminate product transfer and tipping problems.								
continuation of th	Note: The fingers extend between the belt's ribs allowing a smooth continuation of the product flow as the belt engages its sprockets.								

Note: Finger transfer plates are installed easily on the conveyor frame with conventional fasteners.

SERIES 100

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

Complete descriptions of the dimensions are listed on page 423.

Sprocket Description		A		В		С		E		
Pitch D	Diameter	No. Tooth	Range (Bottom to Top)		in	mm	in	mm	in	mm
in.	mm	NO. TEEIIT	in.	mm	111.					
			SERIES	S 100 FLUSH	GRID					
2.0	51	6	0.69-0.83	18-21	1.30	33	2.10	53	1.24	31
3.5	89	11	1.53-1.60	39-41	1.70	43	3.60	91	2.01	51
6.1	155	19	2.82-2.87	72-73	2.20	56	6.20	157	3.30	84
			SERIE	S 100 RAISE	D RIB					
2.0	51	6	0.69-0.83	18-21	1.30	33	2.10	53	1.45	37
3.5	89	11	1.53-1.60	39-41	1.70	43	3.60	91	2.23	57
6.1	155	19	2.82-2.87	72-73	2.20	56	6.20	157	3.52	89

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

Sprocket Description Gap **Pitch Diameter** No. Teeth in. mm in. mm 2.0 51 6 0.134 3.4 3.5 89 11 0.073 1.9 19 0.041 6.1 155 1.0

		Open	Grid
	in	mm	
Pitch	2.00	50.8	
Minimum Width	2	51	
Width Increments	0.36	9.1	
Opening Size (approximate)	0.23 × 0.48	5.8 × 12.3	
Open Area	33	%	
Hinge Style	Clos	sed	
Drive Method	Hinge-	driven	
Product	Notes		
 Stock status before designi a belt. Low profile transverse ridges up or down inclines. Flights and sideguards are av Uses headed rods. Large, open area allows exce Series 200 Open Grid has do the belt edge is not fully flush 	assist in movin vailable. ellent drainage. uble-headed h		
Additional I	nformatio	on	2.00" NOM. (50.8 mm)
 See "Belt Selection Process" See "Standard Belt Materials See "Special Application Belt See "Friction Factors" (page) 	(page 5) " (page 9) <i>Materials"</i> (pa 13)	ge 9)	0.313" (7.9 mm) (7.9 mm) (15.9 mm)

	Belt Data						
Belt Material	Standard Rod Material Ø 0.240 in	BS	Belt Strength	Temperati (contir	ure Range nuous)	W	Belt Weight
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene	Polypropylene	1400	2080	34 to 220	1 to 104	1.24	6.05
Polyethylene	Polyethylene	900	1340	-100 to 150	-73 to 66	1.26	6.15

MIR

Belt Data							
Belt Material	Standard Rod Material Ø 0.240 in	BS	Belt Strength	Temperatu (contir	ure Range luous)	W	Belt Weight
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene	Polypropylene	1800	2680	34 to 220	1 to 104	1.40	6.83
Polyethylene	Polyethylene	1200	1790	-100 to 150	-73 to 66	1.44	7.03

		linge	
	in	mm	
Pitch	2.00	50.8	
Minimum Width	2	51	
Width Increments	0.36	9.1	100-
Opening Size (approximate)	0.26 × 0.48	6.7 × 12.3	
Open Area	45	%	
Hinge Style	Ор	en	
Drive Method	Hinge-	driven	Contraction of the local distance of the loc
Product	Notes		*****************
 Contact Intralox for precise stock status before designing a belt. Smooth surface and generou handling. Uses headed rods. Ideal where air cooling, wash Flights and sideguards are ave For stronger belt performance Hinge. Series 200 Open Hinge has constructed so the belt edge is not fully flue 	e belt measure ng equipment is open area fo ing or drying is vailable. e, see Series 4 double-headed ush.		
Additional In	nformatio	2.00" NOM. (50.8 mm) 2.00" NOM. (50.8 mm)	
 See "Belt Selection Process" (page 5) See "Standard Belt Materials" (page 9) See "Special Application Belt Materials" (page 9) See "Friction Factors" (page 13) 			0.313" (7.9 mm) (7.9 mm) (15.9 mm)

	Belt D	ata					
Belt Material	Standard Rod Material Ø 0.240 in	BS	Belt Strength	Temperat (conti	ure Range nuous)	W	Belt Weight
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene	Polypropylene	300	450	34 to 220	1 to 104	1.04	5.08
Polyethylene	Polyethylene	200	300	-50 to 150	-46 to 66	1.12	5.47

		Sprocket a	and Support Quantity Refere	nce
Belt Wid	th Range ^a	Minimum Number of	N	/earstrips
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway
2	51	1	2	2
4	102	1	2	2
6	152	2	2	2
7	178	2	2	2
8	203	2	2	2
10	254	2	3	2
12	305	3	3	2
14	356	3	3	3
15	381	3	3	3
16	406	3	3	3
18	457	3	3	3
20	508	3	4	3
24	610	5	4	3
30	762	5	5	4
32	813	5	5	4
36	914	5	5	4
42	1067	7	6	5
48	1219	7	7	5
54	1372	9	7	6
60	1524	9	8	6
72	1829	11	9	7
84	2134	13	11	8
96	2438	13	12	9
120	3048	17	15	11
144	3658	21	17	13
For Other Ma	Widths, Use O aximum 7.5 in. (dd Number of Sprockets ^c at 191 mm) & Spacing	Maximum 9 in. (229 mm) & Spacing	Maximum 12 in. (305 mm) & Spacing

a. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 0.36 in. (9.1 mm) increments beginning with minimum width of 2 in. (51 mm). If the actual width is critical, consult Customer Service.
 b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.

c. These are the minimum number of sprockets. Additional sprockets may be required for neavity loaded applications.
 c. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 410 for lock down location.

							Molde	d Spro	ocket		
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	Available E	Bore Size	S	
Teeth (Chordal	Pitch Dia in	Pitch	Outer	Outer	Hub Width	Hub Width	U.S.	Sizes	Metric	: Sizes	
Action)		mm	Dia. III	mm	in	mm	Round in	Square in	Round mm	Square mm	
6 (13.40%)	4.0	102	3.9	99	1.5	38		1.5		40	
10	6.4	163	6.4	163	2.5	64		1.5		40	
(4.89%)								2.5		60	
16 (1.92%)	10.1	257	10.3	262	2.5	64		1.5		40	
								2.5			

						Dou	ble Wi	de Rim	Spro	cket		
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	Available E	Bore Size	s		
Teeth (Chordol	Pitch	Pitch	Pitch	Pitch	Outer	Outer	Hub	Hub	Hub Width U.S. S	Sizes Metri		c Sizes
Action)	2.0.1	mm	Dia. In	mm in	יום. ווד סום. mm	mm in	in	mm	Round in	Square in	Round mm	Square mm
10 (4.89%)	6.4	163	6.4	163	2.5	64		1.5		40		
1												

	Metal Abrasion Resistant Sproc									Sprock
No. of Teeth	Nom. Pitch	Nom. Pitch	Nom. Outer	Nom. Outer	Nom. Hub	Nom. Hub	A	Available E Sizes	Bore Size	S Sizes
(Chordal Action)	Dia. in	Dia. mm	Dia. in	Dia. mm	Width in	Width mm	Round	Square in	Round	Square mm
10 (4.89%)	6.4	163	6.4	163	1.1	28		1.5		40
16	10.1	257	10.3	262	1.1	28		2.5 1.5		40
(1.92%)								2.5		60 65
										00

Streamline Flights

Available F	light Height	Available Meteriala
in	mm	Available Materials
1	25	
2 51		Polypropylene, Polyethylene
3	76	
Nete Foob fligh	t ricco out of the	antar of its supporting Flat Tap module

Note: Each flight rises out of the center of its supporting Flat Top module, molded as an integral part. No fasteners are required. **Note:** Can be enlarged to 6 in (152 mm) high with a welded extension.

Note: An extension can be welded at a 45° angle to create a bent flight. Contact Customer Service for availability. Note: The minimum indent (without sideguards) is 0.7 in (18 mm). Note: Flights can be cut down to custom heights with a minimum height of 0.25

in (13 mm).

- The latter of the first state of the first state of

Double No-Cling Flights

Available F	light Height	Available Materials
in	in mm	
3	76	Polypropylene, Polyethylene

Note: Each flight rises out of the center of its supporting Flat Top module, molded as an integral part. No fasteners are required. Note: Vertically ribbed for product release.

Note: Can be enlarged to 6 in (152 mm) high with a welded extension. Note: An extension can be welded at a 45° angle to create a bent flight. Contact Customer Service for availability.

Note: The minimum indent (without sideguards) is 0.7 in (18 mm).

Note: Flights can be cut down to custom heights with a minimum height of 0.25 in (13 mm).

Available F	light Height	Available Materials		
in	mm	Available Materials		
1.25	32	Polypropylene, Polyethylene		
3	76			
Note: Each fligh	t rises out of Ope e back side. No fa	n Grid modules and has triangular shaped asteners are required.		

Note: Can be enlarged to 6 in (152 mm) high with a welded extension. Note: The minimum indent (without sideguards) is 0.7 in (18 mm). **Note:** Flights can be cut down to custom heights with a minimum height of 0.25 in (13 mm).

		Sidegua	′ds
Availab	le Sizes	Available Materials	
in	mm		
2	51		
3	76	- Delumren dens Delvethylans	
4	102	Polypropylene, Polyetnylene	0 0
6	152		
Note: The minim Note: The norma (8 mm). Note: Standard needed, sidegua	num indent is 0.7 al gap between th sideguard orienta ards can be angle	in (18 mm). The sideguards and the edge of a flight is 0.3 in ation is angled inward toward the product. If ad outward toward the conveyor.	

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

SERIES 200

Sprocket Description		A		В		С		Е		
Pitch D	Diameter	No. Tooth	Range (Botto	Range (Bottom to Top)		mm	in.	mm	in	mm
in.	mm	NO. TEEM	in. mm							
SERIES 200 FLUSH GRID, OPEN				GRID, OPEN	GRID, O	PEN HI	NGE			
4.0	102	6	1.42-1.69	36-43	2.20	56	4.10	104	2.38	60
6.4	163	10	2.77-2.92	70-74	3.00	76	6.50	165	3.61	92
10.1	257	16	4.72-4.81	120-122	3.20	81	10.20	259	5.50	140

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

Top surface of dead plate

2 - Dead plate gap

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Descriptio	Gap			
Pitch Diameter		No Teeth	in	mm	
in.	mm				
4.0	102	6	0.268	6.8	
6.4	163	10	0.160	4.1	
10.1	257	16	0.100	2.5	

	Flush Grid						
	in	mm					
Pitch	2.00	50.8					
Minimum Width	2	51					
Width Increments	0.33	8.4					
Opening Size (approximate)	0.25 × 0.18	6.4 × 4.6					
Open Area	17	%					
Hinge Style	Clos	sed					
Drive Method	Center	-driven	1 The				
Product	Notes		hhhhhhaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa				
 Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt. Smooth upper surface and straightforward design provides free product movement. Uses headed rods for belts without Slidelox® rod retention. Headless rods are used with Slidelox rod retention. Slidelox rod retention is recommended for belts 6.0 ft (1829 mm) wide and wider. 							
Additional I	nformatio	on	2.00" NOM. (50.8 mm) 2.00" NOM. (50.8 mm)				
 See "Belt Selection Process" (page 5) See "Standard Belt Materials" (page 9) See "Special Application Belt Materials" (page 9) See "Friction Factors" (page 13) 			0.313" (7.9 mm) (15.9 mm)				

	Belt D	ata					
Belt Material	Standard Rod Material Ø 0.24 in	BS Belt Strength		Temperature Range (continuous)		W	Belt Weight
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene	Polypropylene	2400	3570	34 to 220	1 to 104	1.82	8.89
Polyethylene	Polyethylene	1800	2680	-100 to 150	-73 to 66	1.90	9.28
Acetal	Polypropylene	3200	4760	34 to 200	1 to 93	2.77	13.51
Acetal ^a	Polyethylene	3000	4460	-50 to 70	-46 to 21	2.77	13.51

a. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

		Raise	d Rib
	in	mm	
Pitch	2.00	50.8	
Minimum Width	Soo h	olow	
Width Increments	See D	elow.	
Opening Size (approximate)	0.25 × 0.24	6.4 × 6.1	
Open Area	26	%	
Product Contact Area	36	%	
Hinge Style	Clos	sed	-
Drive Method	Center	-driven	

Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Raised Ribs extend 0.25 in (6.4 mm) above basic module.
- Use with finger transfer plates to virtually eliminate tippage at infeed and discharge.
- Custom-built in widths from 1.8 in (47 mm) and up for polyethylene and 3.5 in (89 mm) and up for polypropylene, in 0.33 in (8.4 mm) increments.
- All S400 Raised Rib polypropylene belts use the Slidelox® rod retention system and headless rods.
- All S400 Raised Rib polyethylene belts use headed rods.
- Slidelox is glass reinforced polypropylene.
- For improved chemical resistance, Slidelox is also available in PVDF for Enduralox polypropylene belts.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

	0.563" (14.3 mm)				-
Belt D	ata				
rial		Dalt	Tompor	oturo Don	

2.00" NOM. (50.8 mm)

	Belt D	ata					
Belt Material	Standard Rod Material Ø 0.24 in	BS	Belt Strength	Temperatu (contir	ure Range nuous)	W	Belt Weight
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
olypropylene	Polypropylene	2400	3570	34 to 220	1 to 104	1.95	9.52
olyethylene	Polyethylene	1800	2680	-100 to 150	-73 to 66	1.98	9.67
nduralox Polypropylene	Polypropylene	2400	3570	34 to 220	1 to 104	1.95	9.52

2.00" NOM. (50.8 mm)

0.875" (22.2 mm)

¢

	Open Hinge							
Pitch Minimum Width Width Increments Opening Size (approximate) Open Area Product Contact Area	in 2.00 2 0.25 0.47 × 0.18 30 40	mm 50.8 51 6.4 11.9 × 4.6 %						
Hinge Style Drive Method	Op Center	en -driven	and the state of the					
 Contact Intralox for precise stock status before designi a belt. Shares heavy-duty rating with Large, open area improves a cleanability. Uses headed rods. Flights and Sideguards are a Series 400 Open Hinge has o so the belt edge is not fully flue 	hotes ng equipment n other belts in ir flow, drainag vailable. double-headed ush.	this series. e, and						
Additional information See "Belt Selection Process" (page 5) See "Standard Belt Materials" (page 9) See "Special Application Belt Materials" (page 9) See "Friction Factors" (page 13)			2.00" NOM. (\$0.8 mm) 2.00" NOM. (\$0.8 mm) (7.9 mm) (7.9 mm) (15.9 mm) (15.9 mm)					
		Belt D	ata					

	Beit D	ata					
Belt Material	Standard Rod Material Ø 0.24 in	BS	Belt Strength	Temperati (contir	ure Range nuous)	W	Belt Weight
(6.1 mm)		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene	Polypropylene	1550	2300	34 to 220	1 to 104	1.16	5.66
Polyethylene	Polyethylene	950	1400	-50 to 150	-46 to 66	1.24	6.06

Belt Data							
Belt Material	Standard Rod Material Ø 0.24 in Strength		BS Belt Temperature Strength (continuo		re Range Jous)		Belt Weight
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene	Polypropylene	2400	3570	34 to 220	1 to 104	1.81	8.82
Polyethylene	Polyethylene	1800	2680	-100 to 150	-73 to 66	1.90	9.28
Acetal	Polypropylene	3200	4760	34 to 200	1 to 93	2.74	13.38
Acetal ^a	Polyethylene	3000	4460	-50 to 70	-46 to 21	2.74	13.38

a. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

Pitch

Minimum Width

Open Area

Hinge Style

a belt.

retention.

retention.

Drive Method

Width Increments

		Non S	škid
	in	mm	and
Pitch	2.00	50.8	
Minimum Width	2	51	
Width Increments	0.33	8.4	
Opening Size (approximate)	-	-	
Open Area	0	%	
Hinge Style	Clo	sed	
Drive Method	Center	-driven	
Product	Notes		
 Among highest strength rating Contact Customer Service reg Uses headless rods. All Series 400 Non Skid belts retention system. Slidelox is glass reinforced po 	g of all Intralox garding flight a use the Slide olypropylene.	k belts. availability. lox® rod	
See "Belt Selection Process" See "Standard Belt Materials See "Special Application Belt See "Friction Factors" (page 2)	(page 5) " (page 9) <i>Materials</i> " (pa 13)	age 9)	0.625" (2.2 mm) 2.0" NOM. (50.8 mm)

Belt Data							
Belt Material	Standard Rod Material Ø 0.24 in	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
HSEC Acetal	Nylon	2720	4040	-50 to 200	-46 to 93	2.88	14.09
Polypropylene	Polypropylene	2400	3571	-34 to 220	1 to 104	1.81	8.84

Roller Top™						
	in	mm	6969696969			
Pitch	2.00	50.8				
Minimum Width	6	152				
Width Increments	2.00	50.8				
Opening Size (approximate)	-	-				
Open Area	18	%				
Hinge Style	Clos	sed	a start in the			
Drive Method	Center	-driven	a main a			
Product	Notes					
 stock status before designing a belt. Slidelox® flush edges. Acetal rollers, stainless steel Allows for low back pressure Uses headless rods. Roller diameter - 0.70 in (17.8 0.825 in (20.9 mm). Standard roller indent is 0.90 Distance to centerline of first spacing between first and sec Spacing between all other rol Slidelox is glass reinforced point 	ng equipment axles. accumulation. 3 mm). Roller le in (23 mm) roller is 1.3 in (ond roller is 1.8 lers is 2 in (50. olypropylene.	or ordering ength - (33 mm), 3 in (46 mm). 8 mm).				
 See "Belt Selection Process" See "Standard Belt Materials See "Special Application Belt See "Friction Factors" (page 2) 	(page 5) " (page 9) <i>Material</i> s" (pa 13)	ge 9)	2.0" NOM. (50.8 mm)			

intralox

Belt Data							
Belt Material	Standard Rod Material Ø 0.24 in	BS Belt Strength		Temperature Range (continuous)		W	Belt Weight
(6.1 mm)		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene	Nylon	2200	3270	34 to 200	1 to 93	2.44	11.94

Transverse Roller Top [™]					
	in	mm			
Pitch	2.00	50.8			
Minimum Width	6	152			
Width Increments	2.00	50.8			
Opening Size (approximate)	-	-			
Open Area	18	%			
Hinge Style	Clos	sed	P P P P P		
Drive Method	Center	-driven	0 - 0 - 0		
Product	Notes				
 Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt. Slidelox® flush edges. Acetal rollers, stainless steel axles. Designed for 90° transfers. Roller axle pins are stainless steel for durability and long-lasting performance. Uses headless rods. Roller diameter - 0.70 in (17.8 mm). Roller length - 0.825 in (20.9 mm). Standard roller indent is 0.90 in (23 mm) 2 in (50.8 mm) roller spacing. Slidelox is glass reinforced polypropylene. Distance to centerline of first roller is 1.3 in (33 mm), spacing between first and second roller is 1.8 in (46 mm. Spacing between all other rollers is 2 in (50.8 mm). 					
Additional Information See "Belt Selection Process" (page 5) See "Standard Belt Materials" (page 9) See "Special Application Belt Materials" (page 9) See "Eriction Eactors" (page 13) 		0.18" (4.5 mm) (4.5 mm) (0.625" (15.9 mm)			

Belt Data							
Belt Material Standard Rod Material Ø 0.24 in	Standard Rod Material Ø 0.24 in	BS	Belt Strength	Temperat (contir	ure Range nuous)	W	Belt Weight
(6.1 mm)		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene	Nylon	2200	3270	34 to 200	1 to 93	2.44	11.94

0.85 in Diameter Transverse Roller Top [™]						
	in	mm	SIGH-HOIGHSIANIAV			
Pitch	2.00	50.8				
Minimum Width	6	152				
Width Increments	2.00	50.8				
Opening Size (approximate)	-	-				
Open Area	18	%				
Hinge Style	Clos	sed				
Drive Method	Center	-driven	333			
Product	Notes					
 Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt. Slidelox® flush edges. Acetal rollers, stainless steel axles. Designed for 90° transfers. Roller axle pins are stainless steel for durability and long-lasting performance. Uses headless rods. Roller diameter - 0.85 in (21.6 mm). Roller length - 0.825 in (20.9 mm). Standard roller indent is 0.90 in (23 mm) Distance to centerline of first roller is 1.3 in (33 mm), spacing between first and second roller is 1.8 in (46 mm). Spacing between all other rollers is 2 in (50.8 mm). Slidelox is glass reinforced polypropylene. 						
Additional In	nformatio	on	0.56" 0.25" (14.2 mm) (6.3 mm)			
 See "Belt Selection Process" (page 5) See "Standard Belt Materials" (page 9) See "Special Application Belt Materials" (page 9) See "Friction Factors" (page 13) 		(15.9 mm)				

intralox.

Belt Data							
Belt Material	Standard Rod Material Ø 0.24 in	BS	S Belt Temperature Range (continuous)		Belt Weight		
(6.1 mm)		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene	Nylon	2200	3270	34 to 200	1 to 93	2.81	13.71

0° Angled RollerTM

	in	mm	
Pitch	2.00	50.8	
Minimum Width	6	152	
Width Increments	2.00	50.8	
Opening Size (approximate)	-	-	
Open Area	11%		
Hinge Style	Closed		
Drive Method	Center-driven		

Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- This belt uses Activated Roller BeltTM technology.
- Black or grey polyurethane rollers are available. All rollers have an acetal core. Axles are stainless steel.
- Uses headless rods.
- Rollers are in-line with the direction of belt travel.
- In-line rollers can run on a standard flat continuous carryway. A chevron carryway is not recommended.
- Black polyurethane rollers are not recommended for backup conditions.
- 2.0 in (50.8 mm) roller spacing.
- When belt rollers are in motion, product moves faster than the speed of the belt. When belt rollers do not rotate, product travels at belt speed.
- Product behavior varies depending on shape and weight of product, conveyor design, and belt speed.
- Intralox can help you reach a more accurate estimate of product behavior based on product and conveyor characteristics. Contact Intralox Customer Service for more information.
- Custom belts consisting of any combination of 0°, 30°, 45°, or 60° are available. Custom belts can also include rollers oriented in different directions. Contact Intralox Customer Service for more information.
- Angled Roller Belt will not work with the 4.0 in (102 mm) pitch diameter Split Sprocket and all 5.2 in (132 mm) pitch diameter sprockets with 2.5 in and 60 mm square bores.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

Belt Data							
Belt Material	Standard Rod Material Ø 0.24 in	BS Belt Strength		Temperature Range (continuous)		W	Belt Weight
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene/Black Polyurethane	Nylon	1600	2381	34 to 200	1 to 93	2.65	12.94
Polypropylene/Grey Polyurethane	Nylon	1600	2381	34 to 120	1 to 49	2.73	13.33

		30° Angled	Roller™		
Pitch Minimum Width Width Increments Opening Size (approximate)	in 2.00 6 2.00 -	mm 50.8 152 50.8 -	10 10 10 10 10 10 10 10 10 10 10 10 10 1		
Open Area	119	%	- PE	0	1 19.00
Hinge Style	Clos	drivon	-		Jan 1
Drive Metriod Droduct					
 Contact Intralox for precise belt meabefore designing equipment or order This belt uses Activated Roller BeltTM to Grey polyurethane rollers with an aceta stainless steel. Uses headless rods. Rollers are skewed 30° from the direction Grey polyurethane rollers can run on a A chevron carryway is not recommende Belt can be supported using parallel were rollers. Contact Intralox Customer Service 2 in (50.8 mm) roller spacing. When belt rollers are in motion, product belt. When belt rollers do not rotate, proceed to be the set of the conveyor design, and belt speed. Intralva accurate estimate of product behavior betwards the center of the conveyor. Alignment belts on a flat continuous can the belt should be installed to run flush Custom belts consisting of any combination available. Custom belts can also includid directions. Contact Intralox Customer Service Angled Roller Belt will not work with the sprocket and all 5.2 in (132 mm) pitch of 60 mm square bores. Minimum belt width for polyethylene is a between 8 in (203 mm) to 10 in (254 mm 450 lb/ft. (670 kg/m). If any moisture is present, then the low polyethylene belts require ultra abrasio on the drive shaft. Any sprocket can be sprockets with low back tension teeth. Additional Imm See "Belt Selection Process" (page 5) See "Special Application Belt Materials" (page 9) 	surements and st ing a belt. achnology. I core are available on of belt travel. standard flat contir ad. arstrips placed in the ice for more inform moves faster than oduct travels at belt shape and weight of ox can help you rea- based on product a ner Service for more ig two belts with rol ryway require a sid along this wearstrip ation of 0°, 30°, 45° e rollers oriented ir iservice for more inford 4.0 in (102 mm) pit tiameter sprockets 8 in (203 mm). Poly m) wide should be temperature limit of n resistant polyure a used on the idle s formation "(page 9)	e. Axles are huous carryway. between belt lation. the speed of the t speed. of product, ach a more ind conveyor re information. llers oriented de wearstrip and p. °, or 60° are n different ormation. tch diameter split with 2.5 in and yethylene belts de-rated to of the thane sprocket shaft except for			
		Belt D	ata		
Belt Material	Standard Ro	od Material	BS Belt	Temperature Range	Belt Weight

intralox

Belt Material	Standard Rod Material Ø 0.24 in	BS Belt Strength		Temperature Range (continuous)		¥	Belt Weight
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene/Grey Polyurethane	Nylon	1600	2381	34 to 120	1 to 49	2.64	12.89
Polyethylene/Grey Polyurethane	Nylon	500	744	17 to 150	-8 to 65	2.93	14.31

46

	90	° Angled	Roller
	in	mm	A AL
Pitch	2.00	50.8	
Vinimum Width	6	152	
Width Increments	2.00	50.8	
Opening Size (approximate)	-	-	
Open Area	11%		
Hinge Style	Clos	sed	
Drive Method	Center	-driven	

Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Black polyurethane rollers with an acetal core are available. Axles are stainless steel.
- Uses headless rods.
- Black polyurethane rollers should not be allowed to contact a flat continuous or chevron carryway. Belt can be supported using parallel wearstrips placed in between belt rollers. Contact Intralox Customer Service for more information.
- Black polyurethane rollers are not recommended for backup conditions.
- Roller spacing is 2.0 in (50.8 mm).
- Angled Roller belt is not compatible with the 4.0 in (102 mm) pitch diameter split sprocket and all 5.2 in (132 mm) pitch diameter sprockets with 2.5 in and 60 mm square bores.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

WWW	hunni	mm
	2.0" NOM. (50.8 mm)	0.125" (3.2 mm) 0.625" (15.9 mm) 0.125" (3.2 mm)

nnnnhhinn

	Belt D	ata					
Belt Material	Standard Rod Material Ø 0.24 in	BS	Belt Strength	Temperate (contin	ure Range nuous)	W	Belt Weight
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene/Black polyurethane	Nylon	1600	2381	34 to 200	1 to 93	2.65	12.94

		B	elt Data				
Belt Material	Standard Rod Material Ø 0.24 in	BS	Belt Strength	Temperature Ra	nge (continuous)	W	Belt Weight
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene/Black Acetal	Nylon	1600	2381	34 to 200	1 to 93	2.65	12.94

		Ball B	elt
	in	mm	
Pitch	2.00	50.8	-
Minimum Width	10	254	-
Width Increments	2.00	50.8	-
Opening Size (approximate)	-	-	-
Open Area	00	%	-
Hinge Style	Clo	sed	-
Drive Method	Center	-driven	-
			And in case of the local division of the loc

- Ball diameter is 1.0 in (25.4 mm)
 2 in (50.8 mm) space between balls.
- 2 in (50.8 mm) space between balls.
 Standard ball indent is 1.1 in (27.9 mm).
- Rod centerline to top or bottom of module is 0.313 in (7.9 mm).
- Rod centerline to top or bottom of hall is 0.50 in (12.7 mm).
- Alignment configurations should be installed to run flush along the side wearstrip.
- A flat continuous carryway is required.
- Self-set retaining rings for locking sprockets are not recommended.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

	Belt D	ata					
Belt Material	Standard Rod Material Ø 0.24 in	BS	Belt Strength ^a	Temperatu (contin	ire Range iuous)	W	Belt Weight
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Acetal	Polypropylene	2400	3571	34 to 200	1 to 93	3.71	18.11

a. When using steel sprockets, the belt strength for polyethylene is 240 lb/ft (360 kg/m).

0.19

(4.8 mm

2 00" NOM (50 8)

		Sprocket a	and Support Quantity Refere	nce
Belt Wid	Ith Range ^a	Minimum Number of	W	earstrips
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway
2	51	1	2	2
4	102	1	2	2
6	152	2	2	2
7	178	2	2	2
8	203	2	2	2
10	254	2	3	2
12	305	3	3	2
14	356	3	3	3
15	381	3	3	3
16	406	3	3	3
18	457	3	3	3
20	508	5	4	3
24	610	5	4	3
30	762	5	5	4
32	813	7	5	4
36	914	7	5	4
42	1067	7	6	5
48	1219	9	7	5
54	1372	9	7	6
60	1524	11	8	6
72	1829	13	9	7
84	2134	15	11	8
96	2438	17	12	9
120	3048	21	15	11
144	3658	25	17	13
For Other N	Widths, Use Oo laximum 6 in. (1	dd Number of Sprockets ^c at 52 mm) Ç Spacing	Maximum 9 in. (229 mm) ငူ Spacing ^d	Maximum 12 in. (305 mm) & Spacing

a. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Flat Top, Flush Grid, and Raised Rib belts are available in 0.33 in. (8.4 mm) increments beginning with a minimum width of 2 in. (51 mm). The increment for Open Hinge belts is 0.25 in. (6 mm). If the actual width is critical, consult Customer Service.

b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.

c. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 410 for lock down location.

d. Ball Belt and some Angled Roller Belts require a flat continuous carryway.

						Fo	Molde or all belts e	ed Sprod except Flush	c ket a n Grid Ace	tal		
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.		Available E	ore Sizes			1
Teeth (Chordal	Pitch Dia. in	Pitch Dia.	Outer Dia. in	Outer Dia.	Hub Width in	Hub Width	U.S.	Sizes	Metrie	c Sizes		-
Action)		mm		mm		mm	Round in ^b	Square in	Round mm ^b	Square mm		
6 (13.40%)	4.0	102	3.6	91	1.5	38		1.5		40		
8	5.2	132	5.0	127	1.5	38		1.5		40		
(7.61%)								2.5		60		
10	6.4	163	6.3	160	1.5	38	2.0	1.5	82	40		
(4.89%)								2.5		60		
										70		
12	7.8	198	7.7	196	1.5	38		1.5		40	l	
(3.41%)								2.5		60	l	
16	10.1	257	10.2	259	1.5	38		1.5		40	l	
(1.92%)								2.5		60	l	
								3.5		90	1	

a. Contact Customer Service for lead times.

B. Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have set screws for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket needs to be locked down. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967(R1989) and metric key sizes conform to DIN standard 6885.

		:	Split L	ow Ba	For all b	sion U	Itra Abr pt Flush Gr	asion R id Acetal, O	esistar pen Hinge	nt Polyu e and Rolle	r Belts
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.		Available B	ore Sizes		
(Chordal	Pitch Dia. in	Pitch Dia.	Dia. in	Dia.	Hub Width in	Hub Width	U.S.	Sizes	Metric	Sizes	
Action)		mm		mm		mm	Round in	Square in	Round mm	Square mm	
10	6.4	163	6.3	160	1.5	38		1.5		40	A 2411 1974
(4.89%)								2.5			
12 (3.41%)	7.8	198	7.7	196	1.5	38		2.5			
16 (1.92%)	10.1	257	10.2	259	1.5	38		2.5			

a. Contact Customer Service for lead times. When using Low Back Tension Ultra Abrasion Resistant Polyurethane Split Sprockets, the maximum Belt Strength for all styles and materials is 1000 lb/ft (1490 kg/m), and the temperature range for the sprocket is -40 °F (-40 °C) to 160 °F (71 °C).

				Sp	lit Ultra	a Abras	sion Res	sistant F	Polyure	thane S	oprocket ^a
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.		Available E	Bore Sizes		
(Chordal	Dia. in	Dia.	Dia. in	Dia.	Width in	Width	U.S.	Sizes	Metric	Sizes	and the second
Action)		mm		mm		mm	Round in	Square in	Round mm	Square mm	STA 1 1075
10	6.4	163	6.3	160	1.5	38		1.5		40	
(4.89%)								2.5			1 21 1000
											C-003

a. Contact Customer Service for lead times. When using Ultra Abrasion Resistant Polyurethane Split Sprockets, the maximum Belt Strength for all styles and materials is 1000 lb/ft (1490 kg/m), and the temperature range for the sprocket is -40 °C (-40 °C) to 160 °F (-10 °C).

intralox

 Molded Tooth Plate Split Low Back Tension Polyurethane Composite Sprocket® For all belts except Open Hinge and Roller Belts

 Nom.
 Nom.
 Nom.
 Nom.
 Nom.
 Available Bore Sizes

 Pitch
 Outer
 Outer
 Hub
 Hub
 Hub
 Hub
 Hub

No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.		Available B	ore Sizes		
Chordal	Pitch Dia. in	Pitch Dia.	Outer Dia. in	Dia.	Hub Width in	Hub Width	U.S.	Sizes	Metric	Sizes	
Action)		mm		mm		mm	Round in	Square in	Round mm	Square mm	
10	6.4	163	6.3	160	1.70	43		1.5		40	States 2 of 2 3
(4.89%)								2.5		60	is the sound
12	7.8	198	7.7	196	1.5	38		1.5		40	The second
(3.41%)								2.5		60	Thread a
16	10.1	257	10.2	259	1.5	38	3.5	1.5			þ
(1.92%)								2.5			
								3.5		90	

a. Contact Customer Service for lead times. Recommended for Drive Shaft only. There is very little belt tension when a belt engages the idle sprockets. In some applications, the belt may not have enough tension to engage the added Low Back Tension teeth, causing the belt to disengage on the idle sprockets.

Molded Tooth Plate Split Po	yurethane Co	omposite 🕄	Sprocket
-----------------------------	--------------	------------	----------

Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	Available E	Bore Size	S	
Pitch	Pitch	Outer	Outer	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes	-
Dia. III	mm	Dia. III	mm	in	mm	Round in	Square in	Round mm	Square mm	•
6.4	163	6.3	160	1.7	43		1.5		40	
7.8	198	7.7	196	1.5	38		1.5		40	10
10.1	257	10.2	259	1.5	38	4.0	3.5		90	
	Nom. Pitch Dia. in 6.4 7.8 10.1	Nom. Pitch Dia. inNom. Pitch Dia. mm6.41637.819810.1257	Nom. Pitch Dia. inNom. Pitch Dia. mmNom. Outer Dia. in mm6.41636.37.81987.710.125710.2	Nom. Pitch Dia. inNom. Pitch Dia. mmNom. Outer Dia. in mmNom. Outer Dia. mm6.41636.31607.81987.719610.125710.2259	Nom. Pitch Dia. inNom. Pitch Dia. inNom. Outer Dia. inNom. Outer Dia. mmNom. Hub Width in6.41636.31601.77.81987.71961.510.125710.22591.5	Nom. Pitch Dia. in Nom. Pitch Dia. mm Nom. Outer Dia. in mm Nom. Outer Dia. mm Nom. Hub Width in Nom. Hub Width mm 6.4 163 6.3 160 1.7 43 7.8 198 7.7 196 1.5 38 10.1 257 10.2 259 1.5 38	Nom. Pitch Dia. in Dia. in Mm Nom. Outer Dia. in mm Nom. Outer Dia. mm Nom. Hub Width in Nom. Hub Width in Nom. Hub Width mm Nom. Hub Width in A 6.4 163 6.3 160 1.7 43 Round in 7.8 198 7.7 196 1.5 38 4.0 10.1 257 10.2 259 1.5 38 4.0	Nom. Pitch Dia. in mmNom. Outer Dia. in mmNom. Outer Dia. inNom. Outer Dia. mmNom. Hub Width inNom. Hub Width mmNom. Hub Width mmNom. Hub Width mmNom. Hub Width mmNom. Hub Width mmNom. Hub Width mmNom. Hub Width mmNom. Hub Width mmAvailable E U.S. Sizes6.41636.31601.74337.81987.71961.5381.510.125710.22591.5384.03.510.1<	Nom. Pitch Dia. in mmNom. Outer Dia. in mmNom. Outer Dia. inNom. Hub Width inNom. Hub Width mmNom. Hub Width mmNom. Hub Width mmNom. Hub Width mmNom. Hub Width mmNom. Hub Width mmNom. Hub Width mmNom. Hub Width mmNom. Hub Width mmAvailable Bore Size Metric Round in6.41636.31601.743Square inRound mm7.81987.71961.5381.51.510.125710.22591.5384.03.510.11.11.11.11.11.11.11.110.11.11.11.11.11.11.110.11.11.11.11.11.11.110.11.11.11.11.11.11.110.11.11.11.11.11.11.110.11.11.11.11.11.11.110.11.11.11.11.11.11.110.11.11.11.11.11.11.110.11.11.11.11.11.111.11.11.11.11.11.111.11.11.11.11.11.111.11.11.11.11.11.111.11.11.1 <td< td=""><td>Nom. Pitch Dia. in mmNom. Outer Dia. in mmNom. Outer Dia. inNom. Hub Width inNom. Hub Width mmNom. Hub Width mmNom. Hub Width mmNom. Hub Width mmNom. Hub Width mmAvailable Bore Sizes0.15Dia. mmOuter Dia. mmNom. Hub Width mmNom. Hub Midth<</td></td<>	Nom. Pitch Dia. in mmNom. Outer Dia. in mmNom. Outer Dia. inNom. Hub Width inNom. Hub Width mmNom. Hub Width mmNom. Hub Width mmNom. Hub Width mmNom. Hub Width mmAvailable Bore Sizes0.15Dia. mmOuter Dia. mmNom. Hub Width mmNom. Hub Midth<

a. Contact Customer Service for lead times.

		Split	: Meta	l with	Polyur	ethane	(FDA) 、	Joining I	Plates	Reduc
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.		Available B	ore Sizes	
leeth (Chordal	Pitch Dia. in	Pitch Dia.	Outer Dia. in	Dia.	Hub Width in	Hub Width	U.S.	Sizes	Metric	Sizes
Action)		mm		mm		mm	Round in	Square in	Round mm	Square mm
8 (7.61%)	5.2	132	5.0	127	1.5	38		1.5		40
10	6.4	163	6.3	160	1.5	38		1.5		40
(4.89%)								2.5		60
12	7.8	198	7.7	196	1.5	38		1.5		40
(3.41%)								2.5		60

a. Contact Customer Service for lead times.

						HR	Nylon	Split S	Sprock	ket ^a	
No. of Teeth	Nom. Pitch	Nom. Pitch	Nom. Outer	Nom. Outer	Nom. Hub	Nom. Hub	A	Available E	Bore Size	s	
(Chordal	Dia. in	Dia.	Dia. in	Dia.	Width	Width	U.S.	Sizes	Metric	Sizes	
Action)		mm		mm	in	mm	in	in	mm	mm	Track
16 (1.92%)	10.1	257	10.2	196	2.0	51		2.5		60	1 And

a. Contact Customer Service for lead times. For wet applications, contact Sales Engineering.

							HR Ny	lon S	procket ^a	a
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	Bore Sizes	
Teeth (Chordal	Pitch Dia	Pitch Dia	Outer Dia	Outer Dia	Hub Width	Hub Width	U.S. Siz	zes	Metric S	Sizes
Action)	in	mm	in	mm	in	mm	Round in ^b	Square in	Round mm	Square mm
10 (4.89%)	6.4	163	6.3	160	1.5	38		1.5 2.5		
12 (3.41%)	7.8	198	7.7	196	1.5	38		1.5 2.5		40 60
16 (1.92%)	10.1	257	10.2	259	1.5	38		1.5 2.5 3.5		60 90

a. Contact Customer Service for lead times.
b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

						5	Split Me	tal Sp	rocket	а
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	ore Sizes	
Teeth (Chordal	Pitch	Pitch	Outer	Outer	Hub Width	Hub Width	U.S. S	Sizes	Metric	Sizes
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in ^b	Square in	Round mm ^b	Square mm
6 (13.40%)	4.0	102	3.6	91	1.5	38		1.5		40
8	5.2	132	5.0	127	1.5	38	1,1-3/16,	1.5	20	40
(7.61%)							1-1/4, 1- 7/16		30 40	60
10	6.4	163	6.3	160	1.5	38	1, 1-3/16,	1.5	20	40
(4.89%)							1-1/4, 1-	2.5	40	60
							3/8, 1-7/			
							2. 1-15/			
							16			
12	7.8	198	7.7	196	1.5	38	1-7/16,	1.5	40	40
(3.41%)							1-15/16	2.5		60
16	10.1	257	10.2	259	1.5	38	1-7/16,	1.5		40
(1.92%)							1-15/16	2.5		60
								3.5		90

Contact Customer Service for lead times. a.

b. Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have set screws for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket needs to be locked down. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967(R1989) and metric key sizes conform to DIN standard 6885.

	Split Support Wheel										
Available P	Pitch Dia.		Available B	ore Sizes							
in	mm	U.S. Sizes		Metric Sizes		Intreloy					
		Round in	Square in	Round mm	Square mm	etterigation and second as and					
6.4	163	1	1.5 2.5								

Flush Grid Base Flights (Streamline/No-Cling)

Available F	light Height	Available Materials	
in mm		Available Materials	
1	25		
2	51	Polypropylene, Polyethylene	
3	76]	

Note: Flights can be cut down to custom heights with a minimum height of 0.25 in (13 mm).

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: One side of the Flush Grid flight is smooth (Streamline) while the other is ribbed vertically (No-Cling).

Note: The minimum indent (without sideguards) is 0.8 in (20 mm) and the minimum indent for a SLIDELOX® edge (without sideguards) is 1.4 in (36 mm). **Note:** An extension can be welded at a 45° angle for a bent flight.

Flush Grid Base Flights (Double No-Cling)

Available Materials
Polypropylene, Polyethylene
to custom heights with a minimum height of 0.25

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: The minimum indent (without sideguards) is 0.8 in (20 mm) and the minimum indent for a SLIDELOX® edge (without sideguards) is 1.4 in (36 mm) **Note:** 45 degree bent flights are available in polypropylene with a 3 in (76 mm) tall base and with a 1 in (25 mm) or 2 in (51 mm) extension.

		Open Hinge Base Flights	Streamline/No-Cling)
Available Flight Height		Available Matariala	
in	mm	Available iviaterials	
1	25		
2	51	Polypropylene, Polyethylene	
3	76	1	
Note: Flights ca in (13 mm). Note: Each fligh integral part. No Note: One side is ribbed vertica Note: The minir Note: Series 40 (welded extensi flight.	nt rises out of the co of fasteners are rec of the Open Hing Ily (No-Cling). num indent (witho 0 Open Hinge flig on). The extension	center of its supporting module, molded as an quired. e flight is smooth (Streamline) while the other nut sideguards) is 0.6 in (15 mm). hts can be extended to 6 in (152 mm) high n can also be welded at a 45° angle for a bent	

Flat Top Base Flights (Streamline)

Available F	light Height	Available Materials	
in	mm	Available Materials	
4	102	Polypropylopa Polyothylopa Acatal	
6	152	Folypropylene, Folyetilylene, Acetai	

Note: Flights can be cut down to custom heights with a minimum height of 0.25 in (13 mm).

Note: Flat Top flight is smooth (Streamline) on both sides.

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: The minimum indent (without sideguards) is 0.8 in (20 mm) and the minimum indent for a SLIDELOX® edge (without sideguards) is 1.4 in (36 mm). Note: Flat Top-based flights cannot be used with Flush Grid belts.

Sideguard				
Available Materials	Available Sizes			
	mm	in		
	51	2		
Polypropylene, Polyethylene	76	3		
	102	4		
	152	6		

Note: Sideguards have a standard overlapping design and are an integral part of the belt, with no fasteners required.

Note: The minimum indent is 0.8 in (20 mm).

Note: The normal gap between the sideguards and the edge of a flight is 0.4 in (10 mm).

Note: When going around the 6 and 8 tooth sprockets, the sideguards will fan out, opening a gap at the top of the sideguard which might allow small products to fall out. The sideguards stay completely closed when going around the 10, 12 and 16 tooth sprockets.

Note: Standard sideguard orientation is angled inward toward the product. If needed, sideguards can be angled outward toward the conveyor.

Hold Down Tabs

Note: The strength rating for each hold down tab is 100 lbs (45.4 kg) of force perpendicular to the hold down surface. Note: Tabs can be spaced along the length of the belt at either4 inches (101.6

mm) or 6 inches (152.4 mm). Tab spacings greater than 6 inches (152.4 mm) should be avoided due to the potential of mistracking. **Note:** Carryway wearstrip or rollers that engage the tabs are only required at the transition between the horizontal sections and angled sections. This

reduces initial system cost, as well as ongoing maintenance cost and effort. Note: Care should be taken to ensure that adequate lead-in radii and/or angles are used to prevent the possibility of snagging the tab on the frame. Note: A carryway radius should be designed at the transition between horizontal sections and angled sections. This radius must be at least 48 inches (1.22 m) for belts that will be loaded near the belt's strength rating. This radius is one of the most important factors to consider when designing highly loaded

conveyors that utilize hold down tabs.

Note: Available on Non Skid and Flat Top belts

SERIES 400

intralox

			I	nsert Nut	
Available	Base Belt Style	- Material	Available Inse	ert Nut Sizes	
Series 400 Fla	Series 400 Flat Top - Acetal, Polypropylene		5/16" - 18 (8 mm - 1.25 mm)		
Belt Material	Maximum Fi	faximum Fixture Weight		Fastener Torque Specification	
	lbs/nut ^a	kg/nut ^a	in-lbs N-m		
Acetal	200	91	120	13.5	
Polypropylene	175	79	65 7.3		
Note: Insert Nuts Note: Nut placer the edge of the b width of the belt increments. Note: All nut plac when placing an options available Note: Attachmer the rotation of the Note: Sprockets the belt. Note: For attach should be made	s easily allow the nent constraints a pelt, 1-1/3" (34 mr and spacing alon cement dimensio order. Contact In of or your individu the that are conne e belt around the cannot be locate ment bases that of to accommodate	attachment of fix are as follows; 2" m) minimal distan g the length of the ns are referenced tralox Customer a l belt specification exced to more than sprockets. d in-line with the extend across mu for reduced back	tures to the belt. (50 mm) minima ce between nuts e belt is in2" (50 If from the edge of Service for nut lo ons. In one row must n locations of the i ultiple rows, considered.	al indent from s across the mm) of the belt ocation not prohibit insert nuts in siderations	

a. This is fixture weight only. Product weight need not be included.

Available	e Widths	Number of	Available Materials			
in	mm	Fingers				
6	152	18	Polypropylene			
Note: Eliminates product transfer and tipping problems. The 18 fingers extend						

Note: Eliminates product transfer and tipping problems. The 18 fingers extend between the belt's ribs allowing a smooth continuation of the product flow as the belt engages its sprockets.

Note: Easily installed on the conveyor frame with the shoulder bolts supplied. Caps snap easily into place over the bolts, keeping foreign materials out of the slots.

Note: The finger transfer plates for Series 400 are the same for Series 1200.

Two-Material Finger Transfer Plates

Available	e Widths	Number of	Available Materials	
in	mm	Fingers	Avaliable Materials	
6	152	18	Glass-Filled Thermoplastic Fingers, Acetal Backplate	

Note: Plates provide high strength fingers combined with a low friction back plate.

Note: Low-friction back plate is permanently attached to the two high-strength finger inserts.

Note: Eliminates product transfer and tipping problems. The 18 fingers extend between the belt's ribs allowing a smooth continuation of the product flow as the belt engages its sprockets.

Note: Plastic shoulder bolts and bolt covers are included for installing the standard two-material FTPs.

Note: Mounting hardware for the Glass Handling two-material FTPs is sold separately and consists of stainless steel oval washers and bolts, which give more secure fastening for the tough glass applications.

Note: The finger transfer plates for Series 400 are the same for Series 1200.

Note: Available in three different configurations:

Standard - long fingers with a short back plate.

Standard Extended Back - long fingers with an extended back plate

Glass Handling -

- Short fingers with extended back plate

- Short fingers/short back (Contact Customer Service for lead times.)

- Mid-Length Fingers/short back

- Mid-Length Fingers/extended back

The long fingers provide good support for unstable products like PET containers and cans. The short fingers are sturdy enough for even the harshest broken glass applications. These fingers are designed to resist breaking, but if confronted with deeply embedded glass, the individual fingers will yield and break off, preventing costly belt or frame damage. The short back plate has two attachment slots and the extended back plate has three attachment slots.

Note: The 10.1 in (257 mm) PD, 16 tooth sprockets are recommended to be used with the Glass Handling finger transfer plates for best product transfer.

Note: Intralox also offers a single-material polypropylene standard finger transfer plate for better chemical resistance. Mounting hardware for this FTP includes plastic shoulder bolts and snap-cap bolt covers.

SERIES 400

Standard

Long Fingers -

Short Back

in

3.50

0.31

7.2

5.91

3.00

1.45

2.00

F

G

Н

Т

J

κ

L

PP

PE

ES	40	00					intral			
Dimensional Requirements for Finger Transfer Plate Installations										
Two-Material							н			
idard ong jers - t Back	Standa Fing Extende	rd Long Jers - ed Back Back Back Back		ass dling ort lers - nded ack	Glass g Handling Lengtl - Fingers ed Extend Back		2.25" (57 mm)			
mm	in	mm	in	mm	in.	mm				
89	3.50	89	3.50	89	3.50	89				
8	0.31	8	0.31	8	0.31	8				
183	10.75	273	8.26	210	9.04	230				
150	5.91	150	5.91	150	5.91	150	Ġ			
76	3.00	76	3.00	76	3.00	76	3-***			
37	1.45	37	1.45	37	1.45	37				
51	5.50	140	5.50	140	5.50	140				
Spacing at ambient temperature							TWO-MATERIAL FINGER TRANSFER PLATES			
5.952 in		151.2 mm					Two-material glass handling finger transfer plate shown 1 - Spacing			
5.933 in		150.7 mm					2 - 0.5" (13 mm) Radius (leading edge of frame member)			
							3 - Frame member			

Self-Clearing Finger Transfer Plates^a

Availabl	e Width	Number of	Available Materials	
in	mm	Fingers	Available Materials	
6	152	18	Glass-Filled Thermoplastic	

Note: The self-clearing Finger Transfer System consists of a finger transfer plate and a transfer edge belt that are designed to work together. This system eliminates the need for a sweeper bar, a pusher arm, or wide transfer plates. Transfers are smooth and 100% self-clearing, making right angle transfers possible for all container types. The self-clearing Finger Transfer System is ideal for warmer/cooler applications with frequent product changeovers and is compatible with any series and style of Intralox belt on the discharge and infeed conveyors. This system is bi-directional allowing the same transfer belt to be used for both left-hand and right-hand transfers.

Note: Self-clearing Finger Transfer System is capable of transferring product to and from Intralox Series 400, Series 1200, and Series 1900 Raised Rib belts.

Note: Smooth, flat top surface provides excellent lateral movement of containers.

Note: Robust design for durability in tough glass applications.

Note: Finger transfer plates are easily installed and secured to mounting plates of any thickness with stainless steel bolts and oval washers that allow movement with the belt's expansion and contraction.

Note: Stainless steel hardware is sold separately.

Note: Self-clearing Transfer Edge Belt is molded with robust tracking tabs for belt support in heavy side-loading conditions. It has fully flush edges, headed rod retention system, and nylon rods for superior wear resistance.

a. Licensed under Rexnord U.S. Patent Nos. 7,314,130 and 7,448,490

SECTION 2

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

Complete descriptions of the dimensions are listed on page 423.

Sp	rocket Des	scription	A	E	3	()	E		
Pitch D	Diameter	No. Tooth	Range (Bottor	n to Top)	1				i	
in.	mm	No. Teeth	in.	mm	m.	mm	m.	mm	m.	mm
		:	SERIES 400 FLUSH	GRID, FLAT	TOP, OPE	EN HINGE				
4.0	102	6	1.42-1.69	36-43	2.20	56	4.10	104	2.38	60
5.2	132	8	2.10-2.30	53-58	2.60	66	5.30	135	2.99	76
5.8	147	9 ^a	2.44-2.61	62-66	2.70	69	5.95	151	3.49	89
6.4	163	10	2.77-2.92	70-74	2.77	70	6.50	165	3.61	92
7.8	198	12	3.42-3.55	87-90	3.00	76	7.90	201	4.24	108
8.4	213	13 ^b	3.75-3.87	95-98	3.22	82	8.46	215	4.74	120
10.1	257	16	4.72-4.81	120-122	3.20	81	10.20	259	5.50	140
			SERIE	S 400 RAISED	RIB					
4.0	102	6	1.42-1.69	36-43	2.20	56	4.10	104	2.75	70
5.2	132	8	2.10-2.30	53-58	2.60	66	5.30	135	3.24	82
6.4	163	10	2.77-2.92	70-74	2.77	70	6.50	165	3.99	101
7.8	198	12	3.42-3.55	87-90	3.00	76	7.90	201	4.49	114
10.1	257	16	4.72-4.81	120-122	3.20	81	10.20	259	5.88	149
			SERI	ES 400 NON-S	KID					
4.0	102	6	1.42-1.69	36-43	1.60	41	4.09	104	2.46	62
5.2	132	8	2.10-2.30	53-58	1.98	50	5.31	135	3.07	78
5.8	147	9	2.43-2.61	62-66	2.31	59	5.93	151	3.38	86
6.4	163	10	2.77-2.92	70-74	2.26	57	6.56	167	3.70	94
7.8	198	12	3.42-3.55	87-90	2.60	66	7.81	198	4.32	110
8.4	213	13	3.74-3.87	95-98	2.84	72	8.44	214	4.64	118
10.1	257	16	4.71-4.81	120-122	2.97	75	10.34	263	5.59	142
		SE	RIES 400 ROLLER	TOP, TRANSV	ERSE R	OLLER T	OP			
4.0	102	6	1.42-1.69	36-43	2.20	56	4.10	104	2.56	65
5.2	132	8	2.10-2.30	53-58	2.60	66	5.30	135	3.17	81
6.4	163	10	2.77-2.92	70-74	2.77	70	6.50	165	3.79	96
7.8	198	12	3.42-3.55	87-90	3.00	76	7.90	201	4.42	112
10.1	257	16	4.72-4.81	120-122	3.20	81	10.20	259	5.68	144
		SERI	ES 400 0.85 IN. DIA	METER TRAN	SVERSE	ROLLER	ТОР			
4.0	102	6	1.27-1.54	32-39	1.72	44	3.96	101	2.48	63
5.2	132	8	1.95-2.15	50-55	2.13	54	5.18	132	3.09	78

Sp	Sprocket Description		A		E	В	(C	E	
Pitch D	Diameter	No. Tooth	Range (Bottom to Top)		in	mm	in	mm	in	mm
in.	mm	NO. Teeth	in.	mm]					
6.4	163	10	2.62-2.77	67-70	2.43	62	6.42	163	3.71	94
7.8	198	12	3.27-3.40	83-86	2.78	71	7.68	195	4.34	110
10.1	257	16	4.56-4.66	116-118	3.20	81	10.20	259	5.60	142
		SEF	RIES 400 ANGLED I	ROLLER (0°, 3	80°, 45°, 6	0° AND 9	0°) ^b			
4.0	102	6	1.29-1.56	33-40	1.70	43	4.00	102	2.50	64
5.2	132	8	1.98-2.18	50-55	2.11	53	5.23	133	3.11	79
6.4	163	10	2.64-2.80	67-71	2.40	61	6.47	164	3.74	95
7.8	198	12	3.29-3.43	84-87	2.75	70	7.73	196	4.36	111
10.1	257	16	4.59-4.69	117-119	3.16	80	10.25	260	5.63	143
			SERIE	S 400 BALL E	BELT ^b					
4.0	102	6	1.23-1.50	31-38	1.75	44	4.00	102	2.56	65
5.2	132	8	1.91-2.11	49-54	2.16	55	5.23	133	3.18	81
6.4	163	10	2.58-2.74	65-69	2.47	63	6.47	164	3.80	96
7.8	198	12	3.23-3.36	82-85	2.82	72	7.73	196	4.43	112
10.1	257	16	4.53-4.63	115-117	3.25	82	10.25	260	5.69	144

a. Flush Grid Acetal only.

b. Dimensions are established using the top of the roller as the top of the belt and the bottom of the roller as the bottom of the belt.

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

1 - Top surface of dead plate 2

2 - Dead plate gap

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Descript	Gap				
Pitch D	iameter	No. Tooth	in	mm		
in.	mm	NO. Teeth				
4.0	102	6	0.268	6.8		
5.2	132	8	0.200	5.1		
5.8	147	9 (Flush Grid Acetal)	0.178	4.5		
6.4	163	10	0.160	4.1		
7.8	198	12	0.130	3.3		
8.4 213		13 (Flush Grid Acetal)	0.121	3.1		
10.1	257	16	0.100	2.5		

Pitch

Minimum Width

Open Area

Hinge Style

a belt.

nosebar.

used.

headless rods.

Grid in acetal.

Drive Method

SERIES 550 Tight Transfer Flat Top in mm 0.315 8.0 203.2 8 Width Increments 25.4 1 0% Open Center/Hinge **Product Notes** Contact Intralox for precise belt measurements and stock status before designing equipment or ordering • Designed for orientation-sensitive transfers. Conveys product over 0.25 in (6.4 mm) diameter Uses headless rods. • Reduced noise level* at higher speeds. • Standard stainless steel retainer rings are recommended for use with 2.4 in and 3.2 in PD sprockets; corresponding heavy-duty retainer rings may also be • Smooth, closed upper surface with fully flush edges and • Fully sculpted and radiused corners. • Back tension required: 12 lb./ft. of belt width (17.9 kg/m). Compared to S1100 Flat Top in acetal and S1500 Flush

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

Belt Data											
Base Belt Material	Standard Rod Material Ø 0.14 in (3.6 mm)	BS Belt Strength		Strength Temperature Range (continuous)			Belt Weight				
		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²				
Acetal	Acetal	150	220	-50 to 200	-46 to 93	1.10	5.37				
HHR Nylon	Nylon	85	126	-50 to 240	-46 to 116	0.85	4.15				

		Sprocket a	and Support Quantity Refere	nce
Belt Wic	th Range ^a	Minimum Number of	N N	/earstrips
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway
8	203	3	3	3
9	229	3	3	3
10	254	4	3	3
11	279	4	4	3
12	305	4	4	3
13	330	4	4	4
14	356	4	4	4
15	381	5	4	4
16	406	5	5	4
17	432	5	5	4
18	457	5	5	4
19	483	5	5	5
20	508	6	5	5
24	610	6	6	5
30	762	8	7	6
36	914	9	9	7
42	1067	10	10	8
48	1219	11	11	9
54	1372	12	12	10
60	1524	14	13	11
66	1676	15	15	12
72	1829	16	16	13
78	1981	17	17	14
84	2134	18	18	15
90	2286	20	19	16
96	2438	21	21	17
120	3048	26	25	21
156	3962	33	33	27
For Other W	/idths, Use Odd (76 mm)	Number of Sprockets ^c at 3 in.	Maximum 6 in. (152 mm) ငို Spacing	Maximum 12 in. (305 mm) & Spacing

a. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 1.0 in. (25.4 mm) increments beginning with a minimum width of 8 in. (203.2 mm). If the actual width is critical, consult Customer Service.
b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.
c. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 410 for lock down location.

							EZ Cle	ean Spro	ocket	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.		Available E	ore Sizes	
(Chordal	Pitch Dia. in.	Pitch Dia.	Dia. in.	Dia.	Hub Width in.	Hub Width	U.S. Sizes		Metric Sizes	
Action)		mm		mm	nm mm		Round in. ^a	Square in.	Round mm	Square mm
24 (0.86%)	2.4	61	2.4	61	1	25	1	1	25	
32 (0.48%)	3.2	81	3.2	81	1	25		1.5		40

a. Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have set screws for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket needs to be locked down. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967(R1989) and metric key sizes conform to DIN standard 6885.

						I	Non-Tra	cking Sj	procke	t
No. of Teeth (Chordal	Nom. Pitch Dia. in.	Nom. Pitch Dia.	Nom. Outer Dia. in.	Nom. Outer Dia.	Nom. Hub Width in.	Nom. Hub Width	U.S.	Available B Sizes	ore Sizes Metrie	Sizes
Action)		mm		mm		mm	Round in.	Square in.	Round mm	Square mm
24 (0.86%)	2.4	61	2.4	61	1.48	38	1	1	25	
32 (0.48%)	3.2	81	3.2	81	1.48	38		1.5		40

SECTION 2

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

Sprocket Description			А	В		С		E		
Pitch Diameter		No. Tooth	Range (Bottom to Top)		in		in	mm	in	mm
in.	mm	No. reem	in.	mm						
			SERIES 550 TI	GHT TRANSFI	ER FLAT	ТОР				
2.4	61	24	1.09	28	1.27	32	2.41	61	1.38	35
3.2	81	32	1.49	38	1.51	38	3.21	82	1.78	45

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Description	Gap			
Pitch D	iameter	No. Tooth	in	mm	
in.	mm	NO. Teeth			
2.4	2.4 61		0.028	0.7	
3.2	81	32	0.021	0.5	

		Flat ⁻	Гор
	in	mm	
Pitch	2.00	50.8	
Minimum Width	2	51	and it is
Width Increments	0.66	16.8	
Opening Size (approximate)	-	-	
Open Area	0	%	SISTATION I
Hinge Style	Op	ben	
Drive Method	Center	-driven	and the second s
Product	Notes		
 Contact Intralox for precise stock status before designi a belt. Smooth, closed upper surface Uses headed rods. Impact resistant belt designed applications. Flights and sideguards are av 	e belt measure ng equipmen e with fully flus d for tough Me vailable.	ements and t or ordering sh edges. eat Industry	
Additional In	nformati	on	0.625" 2.00" NOM. (50.8 mm) 2.00" NOM. (50.8 mm) (15.9 mm)
 See "Belt Selection Process" See "Standard Belt Materials See "Special Application Belt See "Friction Factors" (page 1) 	(page 5) " (page 9) <i>Materials</i> " (pa 13)	0.313" (7.9 mm)	

Belt Data											
Belt Material	Standard Rod Material Ø 0.24 in	BS	Belt Strength	Belt Temperat Strength (conti		W	Belt Weight				
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²				
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.77	8.66				
Detectable Polypropylene	Polyethylene	650	967	0 to 150	-18 to 66	1.83	8.93				
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.87	9.13				
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.75	13.43				
Nylon	Polyethylene	1200	1780	-50 to 150	-46 to 66	2.32	11.33				

SECTION 2

Belt Data											
Belt Material	Standard Rod Material Ø 0.24 in	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight				
(6.1 mm)		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²				
Polypropylene	Polypropylene	900	1340	34 to 220	1 to 104	1.63	7.96				
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.70	8.30				
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.52	12.3				
Detectable Polypropylene ^a	Blue Polyethylene	500	750	0 to 150	-18 to 66	1.83	8.93				

a. Detectable Polypropylene can be sensed with metal detection equipment. Testing the material on a metal detector in a production environment is the best method for determining detection sensitivity.

	SeamFi	ree™ Opei	n Hinge Flat Top
	in	mm	
Pitch	2.00	50.8	
Minimum Width	6	152	SIN 2 SI
Width Increments	0.66	16.8	State to State
Opening Size (approximate)	-	-	S S S I
Open Area	0	1%	S S S S S S
Hinge Style	O	pen	to to the second
Drive Method	Cente	r-driven	1 - 410 A - 2 - 4
Product	Notes		
Contact Intralox for precise b	elt measureme	nts and stock	
 status before designing equip Smooth, closed upper surface v Uses headed rods. Cam-link designed hinges - expettive belt goes around the sprock feature allows unsurpassed cleater Fully sculpted and radiused correction corners to catch and hold debris Like Series 1600 and Series 18 underside of Series 800 Open Hand debris to the outside of the The drive bar's effectiveness had 	oment or orderi vith fully flush ec ose more hinge a set. This exclusiv aning access to ners - no pocket s. 00, the drive bar dinge Flat Top cl belt for easier, fa s been proven b	ng a belt. Iges. and rod area as this area. s or sharp on the hannels water aster cleanup. both in-house	
 and in field tests. Fully compatible with industry-public spliced directly into Series 80 sprockets and accessories. Streamlined flights are available (152.4 mm) or they can be cut of Belts over 36 in (914 mm) are brow, but seams are minimized. 	roven Series 800 00 Flat Top, usir e. Standard heig down to custom l uilt with multiple) Flat Top – car ng the same ht is 6 in heights. modules per	unnnnnn se
Additional I	nformation		2.00" NOM. (50.8 mm) 2.00" NOM. (50.8 mm) 0.313"
 See "Belt Selection Process" (p See "Standard Belt Materials" (p See "Special Application Belt M See "Friction Factors" (page 13) 	age 5) bage 9) l <i>aterial</i> s" (page 9))))	0.625" (15.9 mm) 1
		D - 14 1	

Belt Data									
Belt Material	Standard Rod Material Ø 0.24 in	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight		
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²		
Polypropylene	Polypropylene	900	1340	34 to 220	1 to 104	1.63	7.96		
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.70	8.30		
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.52	12.3		
X-Ray Detectable Acetala	Blue Polyethylene	900	1340	-50 to 150	-46 to 66	2.98	13.67		

a. Designed specifically to be detected by x-ray machines.

SECTION 2

		Tough Fl	at Top
	in	mm	
Pitch	2.00	51.0	
/linimum Width	2	51	And all all all
Vidth Increments	0.66	16.8	
Opening Size (approximate)	-	-	
Dpen Area	0%	6	
Hinge Style	Ор	en	A A A A A A A A A A A A A A A A A A A
Drive Method	Center	driven	till the on A
Product	Notes		
status before designing equipr Smooth, closed upper surface wi Uses headed rods. Designed to withstand extreme in processing. Easy retrofit from Series 1800 with frame changes for most meat ind A,B,C,E dimensions are within 0. Cam-link designed hinges - expose belt goes around the sprocket. The allows unsurpassed cleaning acc Like Series 1600 and Series 1800 underside of Series 800 Tough F debris to the outside of the belt for drive bar's effectiveness has been field tests. Fully compatible with industry-proc Series 800 Open Hinge - can be styles, using the same sprockets White and grey material is fully or Streamlined Tough flights are ava or (101.6 mm) or 6 in (152.4 mm) custom heights. A molded-in 1.3 edge is available.	nent or orderin th fully flush edge mpact applicatio thout extensive lustry application 25 in (6 mm) of se more hinge a his exclusive Int cess to this area 0, the drive bar lat Top channel or easier, faster n proven both in oven Series 800 spliced directly and accessorie ompliant (FDA a ailable. Standard) or they can be in (33 mm) inde	ing a belt. Jes. Ins in food conveyor Ins since the Series 1800. Ind rod area as ralox feature on the Is water and cleanup. The ind cleanup. The ind cleanup. The ind cleanup. The ind both Is. Ind EU MC) d height is 4 in cut down to nt from the	
Additional In	formation		0.313" (7.9 mm) 2.00" NOM. 2.00" NOM. (50.9 mm)
See "Belt Selection Process" (pag See "Standard Belt Materials" (pa See "Special Application Belt Ma See "Friction Factors" (page 13)	ge 5) age 9) <i>terial</i> s" (page 9)		

intralox

Belt Data									
Belt Material	Standard Rod Material Ø 0.24 in	BS Belt Strength		Temperature Range (continuous)		W	Belt Weight		
(6.1 mm)		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²		
Hi-Impact	Acetal	500	744	0 to 120	-18 to 49	2.26	11.03		
Hi-Impact	Polyethylene	450	670	0 to 120	-18 to 49	2.26	11.03		

70

	Pe	forated	Flat Top
	in	mm	
Pitch	2.00	50.8	
Minimum Width	2	51	
Width Increments	0.66	16.8	and the second se
Min. Opening Size (approx.)	0.29 × 0.08	7.4 × 1.9	
Max Opening Size (approx.)	0.44 × 0.08	11.1 × 1.9	
Open Area	18	%	Contraction of the second seco
Hinge Style	Ор	en	
Drive Method	Center	-driven	and the second sec
Product	Notes		
 Contact Intralox for precise stock status before designi a belt. Perforated version of Series a Smooth upper surface with fu Uses headed rods. Flights and sideguards are av 	belt measure ng equipment 800 Flat Top. Illy flush edges vailable.	ements and or ordering	
Additional I	nformatio	on	0.625" 2.00" NOM. (50.8 mm) 2.00" NOM. (50.8 mm) (15.9 mm)
 See "Belt Selection Process" See "Standard Belt Materials See "Special Application Belt See "Friction Factors" (page 	(page 5) " (page 9) t <i>Material</i> s" (pa 13)	ge 9)	0.313" (7.9 mm)

Belt Data										
Belt Material	Standard Rod Material Ø 0.24 in	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight			
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²			
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.54	7.25			
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.59	7.76			
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.28	11.15			

Perforated Flat Top Round Hole in mm 2.00 Pitch 50.8 2 Minimum Width 51 Width Increments 0.66 16.8 Opening Size (approximate) see photos on right Open Area see photos on right Hinge Style Open Drive Method Center-driven **Product Notes** Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt. • Round hole versions of Series 800 Perforated Flat Top. Smooth upper surface with fully flush edges. Uses headed rods. • If using this belting in abrasive applications, Intralox recommends Series 800 polyurethane sprockets. Stainless steel split sprockets are not recommended for 5/32" (4 mm) - 20% Open Area use with this belt. 11/32" (8.7 mm) - 14% Open Area Additional Information 0.625" 2.00" NOM. (50.8 mm) 2.00" NOM. (50.8 mm) (15.9 mm) • See "Belt Selection Process" (page 5) • See "Standard Belt Materials" (page 9) • See "Special Application Belt Materials" (page 9) 0.313' See "Friction Factors" (page 13) (7.9 mm)

Belt Data										
Belt Material	Standard Rod Material Ø 0.24 in	BS Belt Strength		Temperature Range (continuous)		W	Belt Weight			
	(6.1 mm)		kg/m	°F	°C	lb/ft ²	kg/m²			
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.54	7.52			
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.59	7.76			
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.28	11.15			
CRFR ^a	CRFR	900	1339	0 to 150	-18 to 66	2.87	14.01			

a. Only available in 11/32 in.

		Flush	Grid			
	in	mm	3833	989830		
Pitch	2.00	50.8		YEY EY ANN		
Minimum Width	4.6	117	An			
Width Increments	0.66	16.8	ALL ST			
Opening Size (approximate)	0.15 × 0.90	3.8 × 22.9	at She			
Open Area	27%	6	ALL STATES			
Product Contact Area	73%	6	E I E			
Hinge Style	Ορε	en				
Drive Method	Center-	driven	1 - 1	A Stan to the		
Produc	t Notes		-	ala chi wa		
 Smooth upper surface with fully Open slots improve drainage a Uses headless rods. Flights and sideguards availab Complete range of accessories flights and flights with drainage Provides excellent drainage du Hole design eliminates water or being carried throughout proce Bi-directional belt design allows both directions. Reduces change Perforations on polyethylene e different. See inset picture. 	y flush edges. nd cleanability. le. s available, includi bases. ring production ar ollecting on belt s ssing line. s sprockets to drive ces of installation dge modules are s	ng round-top nd cleanup. urface and e or idle belt in error. slightly	Inset: Polyethylen			
Additional	Information page 5) (page 9) <i>Materials</i> " (page 9) 3)		(50 .625" (15.9 mm) Drawing for Polye 0.313" (7.9 mm)	2.0" 2.0" 2.0" (50.8 mm) 4 .313" (7.9 mm) ethylene NOM. (50.8 mm) 2.00" NOM. (50.8 mm) 4		
Drawing for all other materials						
		Belt D	ata			
Belt Material	Standard Ro	d Material	Belt	Temperature Range VV Belt		

	Belt D	ata					
Belt Material	Standard Rod Material Ø 0.24 in	BS Belt Strength		Temperatu (contin	ure Range luous)	W	Belt Weight
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene	Polypropylene	800	1190	34 to 220	1 to 104	1.45	7.08
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.63	7.96
Acetal	Polyethylene	1000	1490	-50 to 150	-46 to 66	2.25	10.99
Acetal	Polypropylene	1000	1490	34 to 200	1 to 93	2.25	10.99
Detectable Polypropylene A22	Polypropylene	500	744	34 to 150	1 to 66	1.71	8.35
CRFR	CRFR	1000	1488	0 to 150	-18 to 66	2.83	13.82

SECTION 2

Pitch

Belt Data									
Belt Material	Standard Rod Material Ø 0.24 in	BS Belt Strength		Temperature Range (continuous)		W	Belt Weight		
	(6.1 mm)		kg/m	°F	°C	lb/ft ²	kg/m²		
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.60	7.86		

		Mini	Rib
	in	mm	
Pitch	2.00	50.8	
Minimum Width	2	51	
Width Increments	0.66	16.8	AT A STATISTICS
Opening Size (approximate)	-	-	The second second second
Open Area	0	%	and the second second
Hinge Style	Op	ben	
Drive Method	Center	r-driven	S. Stor
Product	Notes		hing unununturing the
 stock status before designi a belt. Closed surface with fully flust Uses headed rods. Impact resistant belt designe applications. 1/8 in (3 mm) Mini Rib on sur gradual inclines and declines Not recommended for back-u required, contact Intralox Sal 	ng equipmen h edges. d for tough Me face accomme face accomme face accomme face accomme face accomme	t or ordering eat Industry odates If values are g.	
Additional I	nformati	on	2.00" NOM. (50.8 mm) 2.00" NOM. (50.8 mm)
 See "Belt Selection Process" See "Standard Belt Materials See "Special Application Belt 	' (page 5) s" (page 9) t <i>Material</i> s" (pa	age 9)	

Belt Data									
Belt Material	Standard Rod Material Ø 0.24 in	BS Belt Strength		Temperati (contir	W	Belt Weight			
(6.1 mm)		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²		
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.77	8.66		
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.87	9.13		
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.92	14.26		

		Nub 1	op™
	in	mm	
Pitch	2.00	50.8	ava va
Minimum Width	4	102	Allan
Width Increments	0.66	16.8	
Open Area	0'	%	and and a second second
Product Contact Area	15	5%	at an at the second
Hinge Style	Op	ben	3350
Drive Method	Center	-driven	C. C. I.S.
Product	Notes		0 0 0 0 0 0 0 0 0 0
 Contact Intralox for precise stock status before design a belt. Closed upper surface with fue Uses headed rods. Standard flights and sidegua available. Nub standard indent is 1.3 in Not recommended for back-u required, contact Intralox Sale 	belt measure ing equipment ing equipment lly flush edges rds (without nu (33.0 mm). up conditions. I les Engineering	ements and t or ordering ubs) are f values are g.	0.100" 0.333" NOM. 0.125" (3.2 mm)
Additional I	ntormatio	on	(2,5 mm) (3,2 mm) (3,2 mm)
 See "Belt Selection Process" See "Standard Belt Materials See "Special Application Bel See "Friction Factors" (page 	' (page 5) s" (page 9) t <i>Materials</i> " (pa 13)	age 9)	0.413" (10.5 mm) 2.00" NOM. (50.8 mm)

Belt Data							
Belt Material	Standard Rod Material Ø 0.24 in		Belt Strength	Temperati (contir	ure Range nuous)	W	Belt Weight
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.90	9.26
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	2.01	9.80
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.95	14.40

	Flus	sh Grid	Nub Top™
	in	mm	7- 5-3
Pitch	2.00	50.8	man
Minimum Width	4.6	117	
Width Increments	0.66	16.8	
Opening Size (approximate)	0.15 × 0.90	3.8 × 22.9	
Open Area	27	%	
Product Contact Area	15%		
Hinge Style	Open		
Drive Method	Center	7	
Dua dua 4			7

Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Standard Nub indent is 1.3 inches (33.0 mm).
- Uses headless rods.
- Nub pattern reduces contact between belt surface and product.
- Can be fitted with Series 800 Flush Grid flights only.
- Manufactured in acetal and polypropylene.
- Recommended for products large enough to span the distance between the nubs.
- Nub pattern is continuous over the surface of the belt, even over the hinges.
- Perforations on polyethylene edge modules are slightly different. See inset picture.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

	Contra la contra	A HAR	11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CHUN 23	- Aller		A.S. MAR			A AR		می می	مرج	Jose Contraction	
Ц	•	1	-	•		-	4	-		4	e A	-	-		

indhoddod

Belt Data								
Belt Material	Standard Rod Material Ø 0.24 in	BS Belt Strength		Temperature Range (continuous)		W	Belt Weight	
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²	
Polypropylene	Polypropylene	800	1190	34 to 220	1 to 104	1.56	7.62	
Acetal	Polyethylene	1000	1490	-50 to 150	-46 to 66	2.36	11.52	
Acetal	Polypropylene	1000	1490	34 to 200	1 to 93	2.36	11.52	
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.85	9.03	

SECTION 2

	SeamFre	e [™] Open	Hinge Nub Top [™]
	in	mm	
Pitch	2.00	50.8	
Minimum Width	6	152	
Width Increments	0.66	16.8	
Opening Sizes (approx.)	-	-	
Open Area	09	%	
Hinge Style	Ор	en	
Drive Method	Center-	Driven	
Product	Notes		0.000
 status before designing equipt Nub height is 0.100 in (2.5 mm). Nub spacing is 0.333 in (8.5 mm Standard nub indent is 1.3 in (33 Closed upper surface with fully fl Uses headed rods. Cam-link designed hinges expose the belt goes around the sprocked feature allows unsurpassed clear Fully sculpted and radiused corn corners to catch and hold debris. Like Series 800 and Series 1800 underside of Series 800 SeamFr channels water and debris to the faster cleanup. The drive bar's et both in-house and in field tests. Not recommended for back-up correquired, contact Intralox Sales E 	hent or orderin ush edges. e more hinge ar t. This exclusive hing access to the ers - no pockets , the drive bar o ee Open Hinge outside of the bar ffectiveness has onditions. If value	nd rod area as e Intralox his area. e or sharp n the Nub Top helt for easier, been proven hes are	0.333" NOM. (8.5 mm)
Additional In	formation		
 See "Belt Selection Process" (pa See "Standard Belt Materials" (pa See "Special Application Belt Ma See "Friction Factors" (page 13) 	ge 5) age 9) h <i>terials"</i> (page 9)	1	0.413" (10.5 mm) (10.5 mm) (10.5 mm) (10.5 mm)

intralox

Belt Data Standard Rod Material **Belt Material** Belt Temperature Range Belt BS W Ø 0.24 in Strength (continuous) Weight (6.1 mm) °F lb/ft² kg/m² lb/ft kg/m °C Polypropylene Polypropylene 900 1340 34 to 220 1 to 104 1.76 8.58 Polyethylene Polyethylene 500 750 -50 to 150 -46 to 66 1.84 8.97 900 -46 to 66 2.72 13.26 Polyethylene 1340 -50 to 150 Acetal

800

		Cone 1	ſop™
	in	mm	
Pitch	2.00	50.8	are in the second
Minimum Width	4	102	
Width Increments	0.66	16.8	
Opening Size (approximate)	-	-	AND A CONTRACT
Open Area	00	%	S STAND
Hinge Style	Ор	en	2 3 S - 1
Drive Method	Center	-driven	and the
Product	Notes		
 Contact Intratox for precise stock status before designi a belt. Closed upper surface with ful Uses headed rods. Standard flights and sideguar available. Cone standard indent is 1.3 in Not recommended for back-u required, contact Intralox Sale 	ly flush edges. ds (without co n (33.0 mm). p conditions. I es Engineering	nes) are f values are	
Additional Ir	nformation	on	0.57" NOM. 0.125" (14.5 mm) R 0.03" (3.2 mm) (0.7 mm)
 See "Belt Selection Process" See "Standard Belt Materials See "Special Application Belt See "Friction Factors" (page 1) 	(page 5) " (page 9) <i>Materials</i> " (pa 13)	ge 9)	0.438" (11.1 mm) (11.1 mm) (11.1 mm) (19.1 mm) (19.1 mm) (19.1 mm) (19.1 mm)

Belt Data							
Belt Material	Standard Rod Material Ø 0.24 in	BS Belt Strength		Temperati (contir	ure Range nuous)	W	Belt Weight
(6.1 mm)		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.84	13.89

intralox

900

1340

Polyethylene

-50 to 150

-46 to 66

2.52

12.3

SECTION 2

80

Acetal

	SeamFre	e [™] Open ∣	Hinge Cone Top [™]
	in	mm	
Pitch	2.00	50.8	
Minimum Width	6	152	
Width Increments	0.66	16.8	- The second sec
Opening Sizes (approx.)	-	-	The second se
Open Area	С)%	
Hinge Style	O	pen	
Drive Method	Cente	r-Driven	
Product	Notes		- Chord
 status before designing equip Cone height is 0.125 in (3.2 mm Cone spacing is 0.295 in (7.5 m) Standard cone indent is 1.3 in (3 Closed upper surface with fully f Uses headed rods. Cam-link designed hinges exposite the belt goes around the sprock feature allows unsurpassed cleated Fully sculpted and radiused corricorners to catch and hold debris Like Series 800 and Series 1800 underside of Series 800 SeamF channels water and debris to the faster cleanup. The drive bar's e both in-house and in field tests. Not recommended for back-up or required, contact Intralox Sales 	ment or orderi). m). 33 mm). lush edges. se more hinge a et. This exclusiv ning access to hers - no pocket ce Open Hinge e outside of the effectiveness ha conditions. If val Engineering.	ng a belt. Ind rod area as re Intralox this area. s or sharp on the cone Top belt for easier, s been proven ues are	0.295" NOM. (7.5 mm)
Additional I	nformation	I	
 See "Belt Selection Process" (pa See "Standard Belt Materials" (p See "Special Application Belt Materials" (p See "Eriction Factors" (page 13) 	age 5) bage 9) a <i>terial</i> s" (page 9	9)	(11.1 mm) 2.0" NOM. (50.8 mm)

•	See	"Friction	Factors"	(page 13)
---	-----	-----------	----------	-----------

Belt Data							
Belt Material	Standard Rod Material Ø 0.24 in	BS Belt Strength		Temperature Range n (continuous)		W	Belt Weight
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.61	12.72

	It	R)X
0	1		04	+0

		Raised	d Rib
	in	mm	
Pitch	2.00	50.8	
Minimum Width	14	356	
Width Increments	2.00	50.8	
Opening Sizes (approx.)	0.51 x 0.49	12.9 x 12.4	
Open Area	40	%	
Hinge Style	Ор	en	TRESER AND
Drive Method	Center	-Driven	the the product of the
Produ	ct Notes		PRA
 status before designing eq Raised Ribs extend 0.275 in fully flush edges. Open slots improve drainage Finger transfer plates are ava Fully compatible with Series and rod exposure as the sprockets. Uses headless rods. 	(7.0 mm) above bas and cleanability. ailable. 800 EZ Clean™ ang ide easy cleaning w ne belt moves aroun	ic module with gled sprockets. ith greater d the	
Additional	Information	0.275" (7.0 mm) 2.00" NOM	
 See "Belt Selection Process" See "Standard Belt Materials See "Special Application Belt See "Friction Factors" (page) 	' (page 5) '' (page 9) <i>t Materials</i> '' (page 9) 13)	0.588" (14.9 mm) (14.9 mm) (14.9 mm) (22.9 mm) (22.9 mm)	

Belt Data									
Belt Material	Standard Rod Material Ø 0.24 in (6.1 mm)	BS	Belt Strength	Temperat (contin	ure Range nuous)	W	Belt Weight		
		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²		
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.48	7.23		
Enduralox™ PP	Polypropylene	1000	1490	34 to 220	1 to 104	1.48	7.23		

		Roller	Тор™				
	in	mm	12.00	5 1	The B	0%	Nº 1
Pitch	2.00	50.8		and		1	110
Minimum Width	See Dred	uat Nataa			Prop 1	211.1	80
Width Increments	See Plou	uci notes	đ	5125	1	1 3/10	
Opening Size (approximate)	-	-	2000	S.		SAG	
Open Area	3'	%	1		The	3/10	
Hinge Style	Op	en			3	P	
Drive Method	Center	-driven			13 B.	Y	
Product	Product Notes					\square	
 Contact Intralox for precise stock status before designi a belt. Fully flush edges. Uses headed rods. Impact resistant belt designed package, low back pressure a Back-up load is 5-10% of pro Acetal rollers, stainless steel Roller diameter - 0.70 in (17.8 0.825 in (20.9 mm). Roller spacing - 2.0 in (50.8 r Standard roller indent is 0.60 Custom-built in widths of 4 in (152 mm) and from 10 in (254 (50.8 mm) increments. 	belt measure ng equipment d for tough box applications. duct weight. axles. 3 mm). Roller I nm). in (15 mm) (102 mm) and 4 mm) and up	ements and t or ordering c and ength - I 6 in in 2.00 in					
Additional li	ntormati	0.75	"		1.062"		
 See "Belt Selection Process" See "Standard Belt Materials See "Special Application Belt See "Friction Factors" (page 1) 	(page 5) " (page 9) <i>Material</i> s" (pa 13)	ge 9)			2.00" NOM. (50.8 mm)	(27 mm)	

Belt Data										
Belt Material	Standard Rod Material Ø 0.24 in	BS	Belt Strength	Temperati (contir	ure Range nuous)	W	Belt Weight			
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²			
Polypropylene	Acetal	1000	1490	34 to 200	1 to 93	2.93	14.34			
Polyethylene	Acetal	500	750	-50 to 150	-46 to 66	2.99	14.62			
Acetal	Acetal	900	1340	-50 to 150	-46 to 66	4.11	20.10			

Belt Data										
Base Belt Material	Base/Friction Color	Standard Rod Material Ø 0.24 in (6.1 mm)	BS	Belt Strength	Temperati (contir	ure Range nuous)	W	Belt Weight	Friction Top Hardness	
			lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²		
Polypropylene Composite	White/Black	Acetal	2500	3713	-50 to 150	-46 to 66	2.3	11.25	-	

	Sprocket and Support Quantity Reference									
Belt Wic	th Range ^a	Minimum Number of	Ŵ	/earstrips						
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway						
2	51	1	2	2						
4	102	1	2	2						
6	152	2	2	2						
8	203	2	2	2						
10	254	2	3	2						
12	305	3	3	2						
14	356	3	3	3						
16	406	3	3	3						
18	457	3	3	3						
20	508	5	4	3						
24	610	5	4	3						
30	762	5	5	4						
32	813	7	5	4						
36	914	7	5	4						
42	1067	7	6	5						
48	1219	9	7	5						
54	1372	9	7	6						
60	1524	11	8	6						
72	1829	13	9	7						
84	2134	15	11	8						
96	2438	17	12	9						
120	3048	21	15	11						
144	3658	25	17	13						
For Other Widths, Use Odd Number of Sprockets ^c at Maximum 6 in. (152 mm) & Spacing			Maximum 9 in. (229 mm) & Spacing	Maximum 12 in. (305 mm)						

a. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 0.66 in. (16.8 mm) increments beginning with minimum width of 2 in. (51 mm). If the actual width is critical, consult Customer Service.
 b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications. Polyurethane sprockets require a maximum

4 in. (102 mm) centerline spacing.
5 The center spacing.
6 The center spacing.
6 The center spacing.
7 The center spacing.
8 The space spacing.
8 The space spa

c. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 410 for lock down location.

EZ Clean Sprocket^a

								-		
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	Available E	Bore Size	s
Teeth (Chordol	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.	Sizes	Metric	c Sizes
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round	Square	Round	Square
,							in ^b	in	mm ^b	mm
6 (13 40%)	4.0	102	3.8	97	1.5	38	1.0	1.5	30	40
(10.4070) o	5.2	122	5.0	107	15	29	1.0	1.5	20	40
o (7.61%)	5.2	152	5.0	127	1.5	30	1.0	1.5	30	40
10 (4.89%)	6.5	165	6.2	157	1.5	38		1.5		40
12 (3.41%)	7.7	196	7.5	191	1.5	38		1.5		40
16 (1.92%)	10.3	262	10.1	257	1.5	38		1.5		40

a. Contact Customer Service for lead times. When using Polyurethane sprockets, the Belt Strength for belts rated over 750 lb/ft (1120 kg/m) will be de-rated to 750 lb/ft (1120 kg/m) and all other belts will maintain their published rating. The temperature range for Polyurethane sprockets is 0° F (-18 °C) to 120 °F (49 °C). Contact Customer Service for availability of Polyurethane sprockets.
b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885

			Split	Ultra	Abra	sion F	Resista	nt Pol	yureth	ane (F
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	Bore Size	s
Teeth (Chordal	Pitch	Pitch	Outer	Outer	Hub Width	Hub Width	U.S.	Sizes	Metric	: Sizes
Action)	ыа. Ш	mm	Dia. III	mm	in	mm	Round in ^b	Square in	Round mm ^b	Square mm
10 (4.89%)	6.5	165	6.2	157	1.5	38		1.5		40
12	7.7	196	7.5	191	1.5	38		1.5		40
(3.41%)								2.5		60
16	10.3	262	10.1	257	1.5	38		1.5		40
(1.92%)								2.5		60

Contact Customer Service for lead times. When using Polyurethane sprockets, the Belt Strength for belts rated over 750 lb/ft (1120 kg/m) will be de-rated to a. a. Contact Customer Service for lead times when using Polydrenaie sprockets, the beit Strength of beits fated over 750 lb/ft (1120 kg/m) and all other beits will maintain their published rating. The temperature range for Polyurethane sprockets is 0° F (-18 °C) to 120 °F (49 °C). Contact Customer Service for availability of Polyurethane sprockets. These sprockets are FDA approved.
 b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885

							Molde	d Spro	cket ^a		
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	Available E	Bore Size	S	
Teeth (Chordal	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.	Sizes	Metric	: Sizes	
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in	Square in	Round mm	Square mm	
8 (7.61%)	5.2	132	5.0	127	1.5	38		1.5		40	
10	6.5	165	6.2	157	1.5	38		1.5		40	
(4.89%)								2.0			
								2.5		60	
12	7.7	196	7.5	191	1.5	38		1.5		40	
(3.41%)								2.5		60	
16	10.3	262	10.1	257	1.5	38		1.5		40	
(1.92%)								2.5		60	

a. Contact Customer Service for lead times. When using Polyurethane sprockets, the Belt Strength for belts rated over 750 lb/ft (1120 kg/m) will be de-rated to 750 lb/ft (1120 kg/m) and all other belts will maintain their published rating. The temperature range for Polyurethane sprockets is 0° F (-18 °C) to 120 °F (49 °C). Contact Customer Service for availability of Polyurethane sprockets.

					Abras	sion R	esista	nt Split	t Meta	I Spro	cket ^a	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	ŀ	Available E	Bore Size	S		
(Chordal	Pitch Dia in	Pitch	Dia in	Dia	HUD Width		U.S.	Sizes	Metric	Sizes		
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in	Square in	Round mm	Square mm	A CONTRACTOR	4
8	5.2	132	5.0	127	1.7	43		1.5		40	86829	15
(7.61%)								2.5		60	5 Colle	1
10	6.5	165	6.2	157	1.7	43		1.5		40	See.	1º
(4.89%)								2.5		60		
12	7.7	196	7.5	191	1.7	43		1.5		40		
(3.41%)								2.5		60		
16	10.3	262	10.1	257	1.7	43		1.5		40		
(1.92%)								2.5		60		

a. Contact Customer Service for lead times.

Angled EZ Clean Sprocket^a No. of Nom. Nom. Nom. Nom. Nom. Nom. Available Bore Sizes Hub Teeth Pitch Pitch Outer Outer Hub U.S. Sizes Metric Sizes (Chordal Dia. in Dia. Dia. in Dia. Width Width Round Square Round Square Action) mm mm in mm in in mm mm 4.0 102 3.8 97 2.0 50.8 1.5 40 6 (13.40%) 5.2 5.0 127 2.0 50.8 1.5 40 8 132 (7.61%) 10 6.5 165 6.2 157 2.0 50.8 1.5 40 (4.89%) 12 7.7 196 7.5 191 2.0 50.8 1.5 40 (3.41%) 10.3 50.8 40 16 262 10.1 257 2.0 1.5 (1.92%)2.5 60

a. Contact Customer Service for lead times. Angled EZ Clean Sprockets can not be used with Series 800 Mesh Top.

		Streamline F
Available F	light Height	Available Materiala
in	mm	Available Materials
1	25	
2	51	
3	76	Polypropylene, Polyetnylene, Acetal, Nylon,
4	102	
6	152	

Note: Flights can be cut down to custom heights with a minimum height of 0.25 in (13 mm).

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: Flat Top flight is smooth (Streamline) on both sides.

Note: The minimum indent (without sideguards) is 1.3 in (33 mm).

Note: An extension can be welded at a 45° angle to create a bent flight.

SECTION 2

a. Contact Customer Service for availability.

Detectable Polypropylene can be sensed with metal detection equipment. Testing the material on a metal detector in a production environment is the best b. method for determining detection sensitivity.

Flat Top Base Flight (No-Cling)

Note: Flights can be cut down to custom heights with a minimum height of 0.25 in (13 mm).

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: The minimum indent (without sideguards) is 1.3 in (33 mm).

Nub Top Base Flight (Double No-Cling)

Available F	light Height	Available Materials				
in	mm					
4	102	Polypropylene, Detectable Polypropylene, Polyethylene, Acetal				

Note: Flights can be cut down to custom heights with a minimum height of 0.25 in (13 mm).

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: No-Cling vertical ribs are on both sides of the flight.

Note: The minimum indent (without sideguards) is 1.3 in (33 mm).

Flush Grid Base Flight (No-Cling)

Available Flight Height		Available Materials	
in	mm	Available Materials	
2	51	Polypropylana Polyothylana Acatal CREP	
4	102	rolypropylene, rolyetnylene, Acetal, CRr	
Note: Flights can be cut down to custom heights with a minimum height of 0.25			

in (13 mm).

Note: The No-Cling vertical ribs are on both sides of the flight.

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: Molded 1.3 in (33 mm) indent available.

Note: The minimum indent (without sideguards) is 1.3 in (33 mm).

Note: These flights cannot be used with the S800 Perforated Flat Top (Slotted version with 18% open area).

No-Cling Impact Resista		
Available Materiala	Available Flight Height	
Available Materials	mm	in
Acetal, Polypropylene	102	4

Note: Flights can be cut down to custom heights with a minimum height of 0.25 in (13 mm).

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: The minimum indent (without sideguards) is 1.3 in (33 mm).

No-Cling Impact Resistant Open Hinge Nub Top Flight

Available Flight Height		Available Materials	
in	mm	Available Materials	
4	102	Acetal, Polypropylene	
		· · · · · · · · · · · · · · · · · · ·	

Note: Flights can be cut down to custom heights with a minimum height of 0.25 in (13 mm).

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: The minimum indent (without sideguards) is 1.3 in (33 mm). **Note:** Molded 1.3 in (33 mm) indent available.

SERIES 800

Impact Resistant Flights

Available Flight Height		Available Materials	
in	mm	Available ivialerials	
1	25	Acetal, X-Ray Detectable Acetal	
2	51		
3	76		
4	102		

Note: Flights can be cut down to custom heights with a minimum height of 0.25 in (13 mm).

Note: Each flight rises out of its supporting module, molded as an integral part. No fasteners are required.

Note: The minimum indent (without sideguards) is 1.3 in (33 mm).

		Open Hinge Impact Re
Available Flight Height		Available Materials
in	mm	
4	102	Polypropylene, Detectable Polypropylene, Polyethylene, Acetal, CRFR
6	152	

Note: Each flight rises out of the center of its supporting module. No fasteners are required.

Note: The minimum indent (without sideguards) is 1.3 in (33 mm) **Note:** Standard 4 in (102 mm) height can be cut to suit application.

Note: Molded 1.3 in (33 mm) and 2 in (51 mm) indent available.

		Tough Flig	hts
Available Flight Height		Available Materiala	
in	mm	Available Materials	
4	102	Hilmpact	
6	152	r in-impact	
Note: Flights can be cut down to custom heights with a minimum height of 0.25 in (13 mm).		custom heights with a minimum height of 0.25	
Note: Each flight rises out of the center of its supporting module. No fasteners are required.		center of its supporting module. No fasteners	100000 March 100000
Note: The minimum indent (without sideguards) is 1.3 in (33 mm) Note: Molded 2 in (51 mm) indent available.		ut sideguards) is 1.3 in (33 mm) t available.	10000 5-000000 - 000000 - 0000

SECTION 2

Scoop Flights^a

Available Materials	Available Flight Height	
	mm	in
Polypropylene, Polyethylene, Acetal, Nylor Detectable Polypropylene ^b	76	3
	102	4
	152	6

Note: Each flight rises out of its supporting module, molded as an integral part. No fasteners are required.

Note: The minimum indent (without sideguards) is 1.3 in (33 mm).

Note: Bucket flights and Scoop flights can be cut and combined for custom built belts. Contact Customer Service for details.

a. Contact Customer Service for availability.
b. Detectable Polypropylene can be sensed with metal detection equipment. Testing the material on a metal detector in a production environment is the best method for determining detection sensitivity.

N	
Ζ	
Ο	
	Note
	No fa
	Note

90

		Bucket Fl	ghts ^a
Available F	Flight Height	Available Materials	
in	mm		
2.25 ^b	57 ^b		
3	76	Polypropylene, Polyethylene, Acetal,	
4	102	Detectable Polypropylene ^c	
6	152		
Note: Each fligh No fasteners are Note: The minim	t rises out of its s required.	supporting module, molded as an integral part.	

Note: Bucket flights and Scoop flights can be cut and combined for custom built belts. Contact Customer Service for details.

- a. Contact Customer Service for availability.
 b. 2.25 in (57 mm) Bucket Flight only available in Polypropylene.
 c. Detectable Polypropylene can be sensed with metal detection equipment. Testing the material on a metal detector in a production environment is the best method for determining detection sensitivity.

		3-Piece Perforated Bucke	and Scoop Flights
Available Flight Height		Available Metoriala	
in	mm		1
4	102	Polypropylene, Polyethylene ^a , Acetal ^a	
Note: Flights co rod. Note: Flight surf 0.130 in (3.3 mr Note: Belt surfa Hinge design. Note: Open slot Note: The minin Note: Flights ca Customer Servic Note: Not for us area) and S800 Note: Bucket pr bottom surface of	ansist of 3 pieces face has 30% op m) \times 2.40 in (70.0 ice has 0% open its improve draina num indent (with in be cut and con ce for details. is with S800 Perfi Flush Grid Nub ofile has a 0.27 in of bucket side pa	the base module, the attachment, and the en area. Opening size (approximate) is mm). area. Base Module is S800 Flat Top Open ge for inclines. but Sideguards) is 2.00 in (50.8 mm). hbined for custom built belts. Contact orated Flat Top (slotted version with 18% open Fop. n (6.9 mm) gap between belt's top surface and nel.	

a. Contact Customer Service for availability.

intra

SERIES 800

	Combining Bucket Flig	hts and Scoop Flights	
The back of the second se		a the ball of an and and and and and and and and and	
6 in (152 mm) bucket flights with indent	3 in (76 mm) bucket flight and scoop flights, no indent	4 in (102 mm) bucket flight and scoop flights, no indent	6 in (152 mm) bucket flight and scoop flights with indent
Note: Bucket flights and	Scoop flights can be cut and combined	for custom built belts. Contact Cust	omer Service for details.

Tapered Edge

Available Materials
Polypropylene, Acetal

Note: Compatible with Series 800 Flat Top and Series 800 Mesh Top Note: Designed to accept headed plastic rods Note: Steel rods will be retained with plastic rodlets

Threaded Barrel Attachments

Available Materials

Acetal

Note: Attaches to S800 Open Hinge Flat Top modules-4 in (102 mm) wide. Note: 3/4"-10 thread

Note: Commonly used on poultry cone assemblies for the manual deboning process.

nohi2	uarde
JIUCH	ualus

Available Sizes		Available Materials				
in	mm					
2	51					
3	76	Polypropylene, Polyethylene, Acetal,				
4	102	Detectable Polypropylene ^a				
6	152					

Note: Standard overlapping design and are an integral part of the belt, with no fasteners required.

Note: Fastened by the hinge rods.

Note: The normal gap between the sideguards and the edge of a flight is 0.3 in (8 mm).

Note: When going around the 6 and 8 tooth sprocket, the sideguards will fan out, opening a gap at the top of the sideguard which may allow small products to fall out. The sideguards stay completely closed when going around the 10, 12 and 16 tooth sprockets.

Note: The minimum indent is 0.7 in (18 mm) except for Flush Grid which is 1.3 in (33 mm).

Note: Detectable Polypropylene is only available in 2 in (51 mm) and 4 in (102 mm).

Note: Standard sideguard orientation is angled inward toward the product (product friendly). If needed, sideguards can be angled outward toward the conveyor.

a. Detectable Polypropylene can be sensed with metal detection equipment. Testing the material on a metal detector in a production environment is the best method for determining detection sensitivity.

Molded-in Sideguards

			-				
Availab	le Sizes	Available Materials					
in	mm	n					
4	102	Polypropylene, Polyethylene, Acetal,					
		Detectable Polypropylene ^a					
Note: Molded as an integral part of the belt, with no fasteners required. Note: Part of Intralox's EZ Clean product line. Note: Standard 4 in (102 mm) height can be cut to suit application. Note: Overlapping sideguards open fully when wrapping around sprocket, allowing greater access during cleaning. Sideguards will open partially on forward bends of elevating conveyors. Note: The molded indent is 1.3 in (33 mm). Note: The minimum backbend radius is 12 in (305 mm). Note: Sideguards can be spliced into all Series 800 Belt Styles, except Series 800 Perforated Elat Top (18% open Area) and Series 800 Flush Grid							

Same and sa

a. Detectable Polypropylene can be sensed with metal detection equipment. Testing the material on a metal detector in a production environment is the best method for determining detection sensitivity.

		Nub Top Molded-ir	l Sideguards
Available Sizes		Available Matariala	
in	mm	Available Materials	
4	102	Acetal, Polypropylene	
Note: Molded as Note: Part of Int Note: Standard Note: Nub Top ^{TI} surface that deliv Note: Overlappi allowing greater forward bends o Note: The molde Note: The minim Note: Sideguarc Series 800 Perfo Nub Top.	s an integral part of ralox's EZ Clean 4 in (102 mm) he design and No C vers superior proo ng sideguards op access during cle f elevating conver- ed indent is 1.3 in hum backbend rai ls can be spliced prated Flat Top (1	of the belt, with no fasteners required. product line. ight can be cut to suit application. Cling rib feature provide a non-stick conveying duct release and cleanability. en fully when wrapping around sprocket, eaning. Sideguards will open partially on yors. (33 mm). dius is 10 in (254 mm). into all Series 800 Belt Styles, except 8% open Area) and Series 800 Flush Grid	

Scoop/Bucket Flight Cross Sectional Area for Vertical Incline								
in	mm	sq. in	sq. mm	Note: Minimum row spacing is 6 in (152 mm) for 6 in (152 mm) Scoop/				
Scoop	o Height	Height Area		Buckets and 4 in (102 mm) for all other sizes.				
3	76	4.3	2774	1∎				
4	102	6.0	3871	R 0.1" (2.5 mm)				
6	152	9.5	6129					
Bucke	t Height	A	rea					
2.25	57	2.3	1484	(12.7 mm) (12.7				
3.00	76	4.3	2774	R 1.0" (000 mm)				
4.00	102	6.0	3871					
6.00	152	9.5	6129					
				1 - Height 2 - Area				

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

ntra

Complete descriptions of the dimensions are listed on page 423.

Sprocket Description		A		В		С		E		
Pitch D	Diameter	No. Tooth	Range (Bottom to Top)		in		in	mm	in	
in.	mm	NO. Teetii	in.	mm	in. mm					
SERIES 800 FLAT TOP, OPEN HINGE FLAT TOP, SEAMFREE™ OPEN HINGE FLAT TOP, TOUGH FLAT										
TOP, PERFORATED FLAT TOP (ALL STYLES), FLUSH GRID, MESH TOP										
4.0	102	6	1.42-1.69	36-43	1.73	44	4.00	102	2.38	60
5.2	132	8	2.09-2.29	53-58	2.00	51	5.20	132	2.98	76
6.5	165	10	2.78-2.94	71-75	2.16	55	6.50	165	3.63	92
7.7	196	12	3.41-3.54	87-90	2.45	62	7.70	196	4.23	107
10.3	262	16	4.74-4.84	120-123	2.84	72	10.30	262	5.53	140
			SERI	ES 800 MINI	RIB					
4.0	102	6	1.42-1.69	36-43	1.73	44	4.13	105	2.50	64
5.2	132	8	2.09-2.29	53-58	2.00	51	5.33	135	3.10	79
6.5	165	10	2.78-2.94	71-75	2.16	55	6.63	168	3.75	95
7.7	196	12	3.41-3.54	87-90	2.45	62	7.83	199	4.35	110
10.3	262	16	4.74-4.84	120-123	2.84	72	10.43	265	5.65	144
	SERIE	S 800 NUB TO	OP, FLUSH GRID I	NUB TOP, SI	EAMFRE	E™ OP	EN HING	E NUB	ТОР	
4.0	102	6	1.42-1.69	36-43	1.73	44	4.10	104	2.48	63
5.2	132	8	2.10-2.30	53-58	1.98	50	5.33	135	3.09	78
6.5	165	10	2.77-2.92	70-74	2.18	55	6.57	167	3.71	94
7.7	196	12	3.42-3.55	87-90	2.43	62	7.83	199	4.34	110
10.3	262	16	4.72-4.81	120-122	2.88	73	10.35	263	5.60	142
	SERIES 8	00 CONE TO	P, OPEN HINGE (ONE TOP, S	EAMFR	EE™ OF	PEN HIN	GE CON	IE TOP	
4.0	102	6	1.42-1.69	36-43	1.73	44	4.13	105	2.50	64
5.2	132	8	2.10-2.30	53-58	1.98	50	5.35	136	3.11	79
6.5	165	10	2.77-2.92	70-74	2.18	55	6.60	168	3.74	95
7.7	196	12	3.42-3.55	87-90	2.43	62	7.85	199	4.36	111
10.3	262	16	4.72-4.81	120-122	2.88	73	10.38	264	5.63	143
SERIES 800 ROLLER TOP										
4.0	102	6	1.42-1.69	36-43	1.73	44	4.44	113	2.81	71
5.2	132	8	2.10-2.30	53-58	1.98	50	5.66	144	3.43	87
6.5	165	10	2.77-2.92	70-74	2.18	55	6.91	176	4.05	103
Spr	ocket Des	scription	Α		E	3	(C		Ε
-----------------------	-----------	-----------	--------------	-----------	---------	----	-------	-----	------	-----
Pitch D	Diameter	No. Tooth	Range (Botto	m to Top)	in	mm	in	mm	in	mm
in.	mm	No. reem	in.	mm						
7.7	196	12	3.42-3.55	87-90	2.43	62	8.17	207	4.68	119
10.3	262	16	4.72-4.81	120-122	2.88	73	10.69	272	5.94	151
SERIES 800 RAISED RIB										
4.0	102	6	1.42-1.69	36-43	1.73	44	4.28	109	2.65	67
5.2	132	8	2.09-2.29	53-58	2.00	51	5.48	139	3.25	83
6.5	165	10	2.78-2.94	71-75	2.16	55	6.78	172	3.90	99
7.7	196	12	3.41-3.54	87-90	2.45	62	7.98	203	4.50	114
10.3	262	16	4.74-4.84	120-123	2.84	72	10.58	269	5.80	147
			SERIES 800	ROUND FRI	CTION T	ОР				
4.0	102	6	1.42-1.69	36-43	1.74	44	4.16	106	2.53	64
5.2	132	8	2.09-2.29	53-58	2.00	51	5.36	136	3.13	80
6.5	165	10	2.78-2.94	71-75	2.17	55	6.66	169	3.78	96
7.7	196	12	3.40-3.54	86-90	2.45	62	7.86	200	4.38	111
10.3	262	16	4.74-4.84	120-123	2.84	72	10.46	266	5.68	144

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Description	Gap			
Pitch D	Diameter	No. Tooth	in	mm	
in.	mm				
4.0	102	6	0.268	6.8	
5.2	132	8	0.200	5.1	
6.5	165	10	0.158	4.0	
7.7	196	12	0.132	3.4	
10.3	262	16	0.098	2.5	

Sea	amFree™	' Minim	un			
	in	mm				
Pitch	2.00	50.8				
Minimum Width	6	152				
Width Increments	1.00	25.4				
Opening Size (approximate)	-	-				
Open Area	00	%				
Hinge Style	Op	Open				
Drive Method	Center	-driven				

Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth, closed upper surface with fully flush edges.
- Uses headed rods.
- Cam-link designed hinges expose more hinge and rod area as the belt goes around the sprocket. This exclusive Intralox feature allows unsurpassed cleaning access to this area.
- Fully sculpted and radiused corners no pockets or sharp corners to catch and hold debris.
- Like Series 1600 and Series 1800, the drive bar on the underside of Series 850 SeamFree[™] Minimum Hinge Flat Top channels water and debris to the outside of the belt for easier, faster cleanup. The drive bar's

effectiveness has been proven both in-house and in field tests.

- Designed for use with Series 800 Angled EZ Clean[™] sprockets, but fully compatible with standard Series 800 EZ Clean sprockets.
- Belts over 36 in (914 mm) are built with multiple modules per row, but seams are minimized.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

SERIES 850

	Belt Data									
Belt Material	Standard Rod Material Ø 0.24 in (6.1 mm)	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight			
		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²			
Acetal	Acetal	275	409	-50 to 200	-46 to 93	2.19	10.68			
Acetal	Polypropylene	250	372	34 to 200	1 to 93	2.13	10.41			
Acetal	Polyethylene	150	223	-50 to 150	-46 to 66	2.13	10.40			
Detectable Acetal	Acetal	275	409	-50 to 200	-46 to 93	2.23	10.89			
Polyethylene	Acetal	200	298	-50 to 150	-46 to 66	1.50	7.32			
Polyethylene	Polyethylene	150	223	-50 to 150	-46 to 66	1.44	7.05			
Polypropylene	Polypropylene	200	298	34 to 220	1 to 104	1.40	6.83			

SECTION 2

SeamFree[™] Minimum Hinge Nub Top[™] in mm Pitch 2.00 50.8 Minimum Width 6 152 Width Increments 25.4 1.00 Opening Sizes (approx.) _ 2 Open Area 0% Hinge Style Open Drive Method Center-Driven **Product Notes** Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt. • Nub height is 0.100 in (2.5 mm). • Nub spacing is 0.333 in (8.5 mm). Standard nub indent is 1.3 in (33 mm). Closed upper surface with fully flush edges. Uses headed rods. Cam-link designed hinges expose more hinge and rod area as the belt goes around the sprocket. This exclusive Intralox feature allows unsurpassed cleaning access to this area. Fully sculpted and radiused corners - no pockets or sharp corners to catch and hold debris. Like Series 800 and Series 1800, the drive bar on the underside of Series 850 SeamFree Minimum Hinge Nub Top channels water and debris to the outside of the belt for easier, faster cleanup. The drive bar's effectiveness has been proven both in-house and in field tests. Not recommended for back-up conditions. If values are 0.100" 0.333" NOM. (2.5 mm) required, contact Intralox Sales Engineering. (8,5 mm) **Additional Information** See "Belt Selection Process" (page 5) 0.725" (18.4 mm) See "Standard Belt Materials" (page 9) 0.413" (10,5 mm) See "Special Application Belt Materials" (page 9) 2.0" NOM. See "Friction Factors" (page 13) 50.8 mm

Belt Data										
Belt Material	Standard Rod Material Ø 0.24 in	BS Belt Strength		Temperati (contir	ure Range nuous)	W	Belt Weight			
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²			
Acetal	Acetal	275	409	-50 to 200	-46 to 93	2.39	11.67			
Acetal	Polypropylene	250	372	34 to 200	1 to 93	2.33	11.38			
Acetal	Polyethylene	150	223	-50 to 150	-46 to 66	2.33	11.38			
Polyethylene	Acetal	200	298	-50 to 150	-46 to 66	1.64	8.01			
Polyethylene	Polypropylene	150	223	-50 to 150	-46 to 66	1.58	7.71			
Polypropylene	Polypropylene	200	298	34 to 220	1 to 104	1.53	7.47			

	SeamFree [™]	[™] Minimu	n Hinge Cone Top™
	in	mm	ZAUMAN ZAUMAN ZAUMAN
Pitch	2.00	50.8	A CARLEN AND A CARLEN
Minimum Width	6	152	Station Station
Maximum Width	36	914	
Width Increments	1.00	25.4	
Opening Sizes (approx.)	-	-	
Open Area	0	%	
Hinge Style	Op	ben	
Drive Method	rive Method Center-Driven		
Produc	t Notes		

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Cone height is 0.125 in (3.2 mm).
- Cone spacing is 0.268 in (6.88 mm).
- Standard cone indent is 1.3 in (33 mm).
- Closed upper surface with fully flush edges.
- Uses headed rods.
- Cam-link designed hinges expose more hinge and rod area as the belt goes around the sprocket. This exclusive Intralox feature allows unsurpassed cleaning access to this area.
- Fully sculpted and radiused corners no pockets or sharp corners to catch and hold debris.
- Like Series 800 and Series 1800, the drive bar on the underside of Series 850 SeamFree Minimum Hinge Cone Top channels water and debris to the outside of the belt for easier, faster cleanup. The drive bar's effectiveness has been proven both in-house and in field tests.
- Not recommended for back-up conditions. If values are required, contact Intralox Sales Engineering.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

Belt Data										
Belt Material	Standard Rod Material Ø 0.24 in	BS	BS Belt Strength		ure Range 1uous)	W	Belt Weight			
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²			
Acetal	Acetal	275	409	-50 to 200	-46 to 93	2.28	11.13			
Acetal	Polypropylene	250	372	34 to 200	1 to 93	2.22	10.84			
Acetal	Polyethylene	150	223	-50 to 150	-46 to 66	2.22	10.84			
Polyethylene	Acetal	200	298	-50 to 150	-46 to 66	1.56	7.62			
Polyethylene	Polypropylene	150	223	-50 to 150	-46 to 66	1.50	7.32			
Polypropylene	Polypropylene	200	298	34 to 220	1 to 104	1.47	7.18			

		Sprocket a	and Support Quantity Refere	ence
Belt Wic	th Range ^a	Minimum Number of	٧	Vearstrips
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway
2	51	1	2	2
4	102	1	2	2
6	152	2	2	2
8	203	2	2	2
10	254	2	3	2
12	305	3	3	2
14	356	3	3	3
16	406	3	3	3
18	457	3	3	3
20	508	5	4	3
24	610	5	4	3
30	762	5	5	4
32	813	7	5	4
36	914	7	5	4
42	1067	7	6	5
48	1219	9	7	5
54	1372	9	7	6
60	1524	11	8	6
72	1829	13	9	7
84	2134	15	11	8
96	2438	17	12	9
120	3048	21	15	11
144	3658	25	17	13
For Other N	Widths, Use O laximum 6 in. (1	dd Number of Sprockets ^c at 52 mm) Ç Spacing	Maximum 9 in. (229 mm) & Spacing	Maximum 12 in. (305 mm) & Spacing

a. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 1.0 in. (25.4 mm) increments beginning with minimum width of 2 in. (51 mm). If the actual width is critical, consult Customer Service

b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications. Polyurethane sprockets require a maximum 4 in. (102 mm) centerline spacing.

c. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 410 for lock down location.

\mathbf{v}	

						Angl	ed EZ	Clean	Sproc	ket ^a	
No. of	o. of Nom. Nom. Nom. Nom. Nom.				Nom.	Nom.	Available Bore Sizes				
(Chordol	Dia in	Dia	Dia	Dia	UUD Width	Midth	U.S. Sizes		Metric	c Sizes	
Action)	Dia. III.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm	
6 (13.40%)	4.0	102	3.8	97	2.0	50.8		1.5		40	
8 (7.61%)	5.2	132	5.0	127	2.0	50.8		1.5		40	
10 (4.89%)	6.5	165	6.2	157	2.0	50.8		1.5		40	
12 (3.41%)	7.7	196	7.5	191	2.0	50.8		1.5		40	
16	10.3	262	10.1	257	1.5	38		1.5		40	
(1.92%)								2.5	1	60	

a. Contact Customer Service for lead times. Angled EZ Clean Sprockets can not be used with Series 800 Mesh Top

		Streamline F	lights			
Available F	light Height	Available Materials				
in.	mm					
4	102	Polypropylene, Acetal				
Note: Flights are	Note: Flights are available in the SeamFree [™] design at 12 in. (304 mm) wide;					
flighted belts gre	ater that 12 in. (3	04 mm) wide are available with seams				

minimized. Note: Flights can be cut down to custom heights with a minimum height of 0.25

in (13 mm). Note: Each flight rises out of the center of its supporting module, molded as an

integral part. No fasteners are required.

Note: Flat Top flight is smooth (Streamline) on both sides.

Note: Molded-in, 1.3 in. (33 mm) indent from each edge.

ghts

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

Complete descriptions of the dimensions are listed on page 423.

Spr	ocket Des	scription	Α		E	3	C	;	E	E
Pitch D	liameter	No. Tooth	Range (Bottor	n to Top)	in	mm	in	mm	in	mm
in.	mm	NO. Teeth	in.	mm						
SERIES 850 SEAMFREE™ MINIMUM HINGE FLAT TOP										
4.0	102	6	1.42-1.69	36-43	1.73	44	4.00	102	2.38	60
5.2	132	8	2.09-2.29	53-58	2.00	51	5.20	132	2.98	76
6.5	165	10	2.78-2.94	71-75	2.16	55	6.50	165	3.63	92
7.7	196	12	3.41-3.54	87-90	2.45	62	7.70	196	4.23	107
10.3	262	16	4.74-4.84	120-123	2.84	72	10.30	262	5.53	140
		SER	RIES 850 SEAMFR	REE™ MINIM	UM HING	GE NUB	ТОР			
4.0	102	6	1.42-1.69	36-43	1.73	44	4.10	104	2.48	63
5.2	132	8	2.10-2.30	53-58	1.98	50	5.33	135	3.09	78
6.5	165	10	2.77-2.92	70-74	2.18	55	6.57	167	3.71	94
7.7	196	12	3.42-3.55	87-90	2.43	62	7.83	199	4.34	110
10.3	262	16	4.72-4.81	120-122	2.88	73	10.35	263	5.60	142
		SER	IES 850SEAMFRE	EE™ MINIMU	M HING	E CONE	ТОР			
4.0	102	6	1.42-1.69	36-43	1.73	44	4.13	105	2.50	64
5.2	132	8	2.10-2.30	53-58	1.98	50	5.35	136	3.11	79
6.5	165	10	2.77-2.92	70-74	2.18	55	6.60	168	3.74	95
7.7	196	12	3.42-3.55	87-90	2.43	62	7.85	199	4.36	111
10.3	262	16	4.72-4.81	120-122	2.88	73	10.38	264	5.63	143

SECTION 2

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Descriptio	Gap			
Pitch Diameter		No. Teeth	in		
in.	mm				
5.2	132	8	0.200	5.1	
6.5	165	10	0.158	4.0	
7.7	196	12	0.132	3.4	

Medium Slot							
	in	mm					
Pitch	2.0	50.8					
Minimum Width	6.0	152					
Width Increments	0.66	17					
Slot Size, Linear	0.08 x 0.40	2.0 x 10.2					
Slot Size, Transverse	0.09 x 0.24	2.3 x 6.1					
Open Area	20	%					
Hinge Style	Ор	en					
Drive Method	Center	Driven					
Product	Notes						
 Proven Enduralox[™] polypropyle resistance to chemical and temp Proven drive system requires less sensitive to belt elongation Barn door style rod retention sys routine maintenance. Uses headless rods. Molded-in sideguards, flush with utilization of belt surface and rob contamination risks For belts with molded-in sideguard backbend radius of 7.0 in (180 m) 	ne material incre erature cycling so back tension a tem simplifies ir belt edges, prov ust design redu rds, provide a m m).	eases and is less istallation and ides maximum ces inimum					
Additional Ir	formation						
 See "Belt Selection Process" (page 54) See "Standard Belt Materials" (page 54) 	ige 5)		2.0" 2.0"				
See "Special Application Belt Ma	age 9) aterials" (page 9))	(50.8 mm) (50.8 mm) (50.8 mm) (15.9 mm)				

Belt Data								
Belt Material	Standard Rod Material Ø 0.24 in. (6.1 mm)	BS	Belt Strength	Temperatu (contin	ire Range uous)	W	Belt Weight	
		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²	
Enduralox Polypropylene	303/304 Stainless Steel	1500	2230	34 to 220	1 to 104	2.4	11.	

105

Belt Data									
Belt Material	Standard Rod Material Ø 0.24 in (6.1 mm)	BS	Belt Strength	Temperatu (contin	ire Range uous)	W	Belt Weight		
		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²		
Enduralox Polypropylene	Wear-resistant Stainless Steel	2000	3000	34 to 212	1 to 100	2.6	12.7		

SECTION 2

Large Slot SSL								
	in	mm						
Pitch	2.0	50.8						
Minimum Width	16.0	406						
Width Increments	0.66	17						
Slot Size, Linear	0.16 x 0.39	4.1 x 9.9						
Slot Size, Transverse	0.12 x 0.50	3.0 x 12.7						
Open Area	22	%						
Hinge Style	Ор	en						
Drive Method	Center-	Driven						
Product	Notes		A Prost					
 Proven Enduratox¹^m polypropyle resistance to chemical and temp Stainless Steel Links (SSL) are to manage high loads and therm temperature variations. Proven drive system requires less sensitive to belt elongation Barn door style rod retention systroutine maintenance. Uses headless rods. Molded-in sideguards (MISG), fl maximum utilization of belt surfacontamination risks For belts with Molded-in sideguarbackbend radius of 7 in (180 mn 	ene material incre perature cycling integrated into the nal expansion assess back tension a stem simplifies in ush with belt edg ice and robust de inds (MISG), expen- nformation							
 See "Belt Selection Process" (page 64) See "Standard Belt Materials" (page 64) See "Special Application Belt Materials" (page 64) 	age 5) bage 9) aterials" (page 9)	SIDE GUARD SIDE GUARD SIDE GUARD (76 mm) (76 mm) (76 mm) (76 mm) (78 mm) (50.8 mm) (50.8 mm)						

Belt Data									
Belt Material	Standard Rod Material Ø 0.24 in (6.1 mm)	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight		
		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²		
Enduralox Polypropylene	Wear-resistant Stainless Steel	2000	3000	34 to 212	1 to 100	2.6	12.7		

Belt Data							
Belt Material	Standard Rod Material Ø 0.24 in.	BS	Belt Strength	Temperature Ra	nge (continuous)	W	Belt Weight
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Acetal	304 Stainless Steel	1500	2200	-50 to 150	-46 to 66	3.10	15.14

1	0	Q

	Sprocket and Support Quantity Reference										
Medium Slot, Round Hole Enhanced			Med	ium Slot SSL, L	Wearstrips						
Belt Wid	th Range ^a	Minimum Number of	Belt Wid	th Range ^a	Maximum Number of	Medium Slot a	nd Large Slot SSL				
in	mm	Sprockets Per Shaft ^b	, in mm		Sprockets Per Shaft ^b	Carryway	Returnway				
6	152	2	22.6-28.0	575-711	6	2	2				
8	203	2	28.6-30.6	727-778	7	2	2				
10	254	2	31.3-35.3	795-897	8	3	2				
12	305	3	36.0-40.6	914-1032	9	3	2				
14	356	3	41.3-46.0	1049-1167	10	3	3				
16	406	3	46.6-48.0	1184-1218	11	3	3				
18	457	3	48.6-52.6	1235-1336	12	3	3				
20	508	5	53.3-58.6	1353-1489	13	4	3				
24	610	5	59.3-64.6	1506-1641	14	4	3				
30	762	5	65.3-66.6	1658-1692	15	5	4				
32	813	7	67.3-72.6	1709-1844	16	5	4				
36	914	7	73.3-79.9	1861-2030	17	5	4				
42	1067	7	80.6-84.6	2047-2148	18	6	5				
48	1219	9	85.3-87.9	2165-2233	19	7	5				
54	1372	9	88.6-91.9	2250-2335	20	7	6				
60	1524	11	92.6-95.2	2351-2419	21	8	6				
72	1829	13	95.9-98.6	2436-2504	22	9	7				
84	2134	15	99.2-103.2	2521-2622	23	11	8				
96	2438	17	103.9-109.2	2639-2774	24	12	9				
120	3048	21	109.9-118.6	2791-3011	25	15	11				
144	3658	25	119.2-119.9	3028-3045	26	17	13				
For Other Widths, Use Odd Number of Sprockets at Maximum 6 in. (152 mm) & Spacing			To avoid spi links plea instruction or	rockets to interfe ase refer to our s belt maintenanc line.	Maximum 12 in.	(305 mm) Ç Spacing					

a. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 0.66 in. (16.8 mm) increments beginning with minimum width of 2 in. (51 mm). If the actual width is critical, consult Customer Service.
 b. All sprockets are to be locked in place on the shaft. Use appropriate locking collars to restrict axial movement.

							Nylor	ı Sproe	cket	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	Bore Size	s
Teeth (Chordal	Pitch Dia in	Pitch	Outer Dia	Outer	Hub Width	Hub Width	U.S.	Sizes	Metric	: Sizes
Action)	Dia. 11.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm
10 (4.70%)	6.5	165	6.2	157	1.0	25	Custom Order	Custom Order	50, 60, 70, 80, 90 and 100	Custom Order
12 (3.29%)	7.78	196	7.5	191	1.0	25	Custom Order	Custom Order	50, 60, 70, 80, 90 and 100	50, 60, 70, 80, 90
Note: Impe	rial kov s	sizes on	round h	ore sor	nckate co	onform to	ANSI sta	ndard B17	1-1967	(R1080)

MIR

ets conform to ANSI star on round ore sproce **e:** imp iai key siz 1967 (R1989) and metric key sizes conform to DIN standard 6885.

Note: All sprockets are to be locked in place on shaft.

					Bui	ildup F	Resista	ant Ace	etal S _l	procke	et'
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	Bore Size	S	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.	Sizes	Metric	: Sizes	
Action)	Dia. In.	Dia. mm	bia. in.	Dia. mm	mm in.	mm	Round in.	Square in.	Round mm	Square mm	
10 (4.89%)	6.5	165	6.2	157	1.5	38		2.5		60 ^b	

Note: Designed to work with the Round Hole Enhanced belt in Freezer Tunnel applications. Contact Intralox Customer Service for other applications. Note: All sprockets are to be locked in place on shaft.

a. Contact Customer Service for lead times.b. Available as standard 60 mm square bore or available with 4 retention notches.

		Univ	/ersal Sideguards
Availab	le Height	Available Materials	
in.	mm	Available ivialerials	
2	51	Blue Polypropylene	
3	76	Blue Polypropylene	
4	102	Blue Polypropylene	
6	152	Blue Polypropylene	
Note: Part of Intra Note: There is a in Note: The minimu Note: Standard s the product (prod angled outward to	alox's EZ Clean pro minimum indent of um back bend radi ideguard orientatic uct friendly). If nee oward the conveyo	oduct line. 2.0 in. (51 mm) at edges. us is 4.5 in. (115 mm). on is angled inward toward ded, sideguards can be r.	

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

Conveyor frame dimensions are established using the top of the roller as the top of the belt and the bottom of the module as the bottom of the belt. "B" dimension is based on a 0.5 in. (12.7 mm) thick carryway.

SERIES 888

Sprocket Description A			E	3	C			E		
Pitch D	Diameter	No. Tooth	Range (Botto	Range (Bottom to Top)		n mm	in	mm	in	mm
in.	mm		in.	mm						
6.5	165	10	2.77-2.925	70-74	3.00	76	6.5	165	3.61	92
7.7	196	12	3.42-3.55	87-90	3.00	76	7.9	201	4.24	108

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Description	Ga	р		
Pitch D	iameter	No. Tooth	in		
in.	mm	NO. Teeth			
6.5	165	10	0.158	4.0	
7.7	196	12	0.132	3.4	

intralox.

1	1	3

		Open	Grid
	in	mm	
Pitch	1.07	27.2	
Minimum Width	2	51	
Width Increments	0.33	8.4	
Opening Size (approximate)	0.24 × 0.28	6.1 × 7.1	
Open Area	38	%	
Hinge Style	Ор	en	
Drive Method	Center	-driven	The second se
Product	Notes		
 Low-profile transverse ridges assist in moving product up in Uses headed rods. Large, open area allows for e Normal indent of the ridge is Not recommended for back-uvalues between product and Intralox Sales Engineering. 	0.188 in (4.8 m nclines and do excellent draina 0.25 in (6.4 m up conditions. I belt are require	nm) high wn declines. age. n). f friction ed, contact	
Additional I	nformatio	on	0.360" 1.07" 1.07" 1.07" 0.188"
 See "Belt Selection Process" See "Standard Belt Materials See "Special Application Belt See "Friction Factors" (page 	' (page 5) " (page 9) t <i>Materials</i> " (pa 13)	ge 9)	(9.1 mm) (27.2 mm) (27.2 mm) (27.2 mm) (4.8 mm) 0.532" (13.2 mm) (13.2 mm)
		B. 14 -	

Belt Data										
Belt Material	Standard Rod Material Ø 0.18 in	BS Belt Strength		Temperature Range (continuous)		W	Belt Weight			
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²			
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.81	3.95			
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	0.84	4.09			
Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.26	6.14			
Acetal ^a	Polyethylene	1000	1490	-50 to 70	-46 to 21	1.26	6.14			

a. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

		Flush	Grid
	in	mm	
Pitch	1.07	27.2	
Minimum Width	2	51	
Width Increments	0.33	8.4	
Opening Size (approximate)	0.24 × 0.28	6.1 × 7.1	
Open Area	38	%	
Hinge Style	Ор	en	
Drive Method	Center	-driven	
Product	Notes		
 Contact Intralox for precise stock status before designi a belt. Open pattern with smooth up edges. Uses headed rods. Offers excellent lateral movel Flights and sideguards are and HR nylon belts use short rodl rod in place. The rodlets are material as the main rod. 	belt measure ng equipment per surface, fu ment of contair vailable. lets to hold the made from the	ements and or ordering lly flush hers. main hinge same	
Additional I	nformatio	on	0.172" 1.07" 1.07" 1.07" 1.07" 0.344" (4.4 mm) (7.2 mm) (7.2 mm) (7.2 mm) (7.2 mm) (8.7 mm)
 See "Belt Selection Process" (page 5) See "Standard Belt Materials" (page 9) See "Special Application Belt Materials" (page 9) See "Eristian Easters" (page 12) 			

intralox

Belt Data											
Belt Material	Standard Rod Material Ø 0.18 in	BS E		Temperature Range (continuous)		W	Belt Weight				
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²				
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.76	3.70				
Enduralox™ Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.76	3.70				
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	0.81	3.96				
Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.15	5.62				
HSEC Acetal	Polypropylene	800	1190	34 to 200	1 to 93	1.15	5.62				
Hi-Temp	Hi-Temp	1200	1786	70 to 400	21 to 204	1.08	5.27				
FR-TPES	Polypropylene	750	1120	40 to 150	4 to 66	1.19	5.81				
HR Nylon ^a	HR Nylon	1200	1790	-50 to 240	-46 to 116	1.10	5.40				
HHR Nylon	HHR Nylon	1200	1790	-50 to 310	-46 to 154	1.10	5.40				
Acetal ^b	Polyethylene	1000	1490	-50 to 70	-46 to 21	1.15	5.62				

a. This product cannot be used for food contact articles that will come in contact with food containing alcohol.b. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

	sh Grid		
	in	mm	2233777777777777777777777777777
Pitch	1.07	27.2	
Minimum Width	10	254	
Width Increments ^a	0.33	8.4	Contraction of the second second
Minimum Opening Size (approx.)	0.17 x 0.29	4.3 x 7.4	
Maximum Opening Size (approx.)	0.28 x 0.29	7.1 x 7.4	
Open Area	43	%	
Hinge Style	Ор	en	and the second of
Drive Method	Center	-driven	
Product N	otes		เกากกกกกกกกกกกกกก
 Contact intrator for precise be stock status before designing a belt. Open pattern with a smooth uppe edges. Flush edge is designed to accom resistant nylon rod growth for bel or narrower. Uses headless rods. Flight accessories are available i only. 	equipment of er surface and modate spec t widths 42" (n HHR nylon		
Additional Information			
 See "Belt Selection Process" (pa See "Standard Belt Materials" (pa See "Special Application Belt Ma See "Friction Factors" (page 13) 	ge 5) age 9) aterials" (page	0.172° 1.07° 1.07° (27.2 mm) (27.2 mm) 0.344° (8.7 mm) (8.7 mm)	

a. Belts made with nylon materials (HR and HHR) are available in whole inch width increments. For fractional belt width needs, please contact customer service.

Belt Data										
Belt Material	Standard Rod Material Ø 0.180 in	BS Belt Tem Strength		Temperati (contir	Temperature Range (continuous)		Belt Weight			
(4.6 mm)		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²			
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.76	3.71			
Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.10	5.37			
HR Nylon	HR Nylon	1200	1786	-50 to 240	-46 to 116	1.02	4.98			
HHR Nylon	HHR Nylon	1200	1786	-50 to 310	-46 to 154	1.04	5.08			

Mold	to Width	Flush Grid
in	mm	
1.07	27.2	
3.25	83	
4.5	114	
7.5	191	
-	85	
0.24 × 0.28	6.1 × 7.1	
38%		-
Ор		
Center	-driven	
	Mold in 1.07 3.25 4.5 7.5 - 0.24 × 0.28 0p Center	Mold to Width in mm 1.07 27.2 3.25 83 4.5 114 7.5 191 - 85 0.24 × 0.28 6.1 × 7.1 38∀ Open Center-triven Center-triven

Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Tracking tabs provide lateral tracking.
- Uses headed rods.
- Series 900 Mold To Width belts are boxed in 10 ft. (3.05 m) increments.
- Width tolerances for the Series 900 Mold To Width belts are +0.000/-0.020 in (+0.000/-0.500 mm).
- One sprocket can be placed on the 3.25 in (83 mm) and 85 mm mold to width belt. Up to three sprockets can be placed on the 4.5 in (114 mm) mold to width belt. Up to five sprockets can be placed on the 7.5 in (191 mm) mold to width belt.
- The Series 900 Mold To Width belt should not be used with sprockets smaller than a 3.5 in (89 mm) pitch diameter (10 tooth) sprocket. If a 3.5 in (89 mm) pitch diameter is required, the split sprocket should not be used.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

Series 900 Flush Grid Mold to Width

Arrow indicates preferred running direction

	Belt Data											
Belt V	Vidth	Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	od Material (4.6 mm)		Temperatu (contin	ire Range iuous)	W	Belt Weight			
inch	(mm)			lb	kg	°F	°C	lb/ft	kg/m			
3.25	83	Polypropylene	Nylon	130	59	34 to 220	1 to 104	0.31	0.46			
3.25	83	Acetal	Nylon	250	113	-50 to 200	-46 to 93	0.42	0.62			
4.5	114	Polypropylene	Nylon	263	120	34 to 220	1 to 104	0.39	0.58			
4.5	114	Acetal	Nylon	555	252	-50 to 200	-46 to 93	0.54	0.80			
7.5	191	Polypropylene	Nylon	438	199	34 to 220	1 to 104	0.59	0.88			
7.5	191	Acetal	Nylon	800	363	-50 to 200	-46 to 93	0.85	1.26			
	85	Acetal	Nylon	275	125	-50 to 200	-46 to 93	0.38	0.57			

	ONEPIEC	CE™ Live Tr	ansfer Flush Grid
	in	mm	
Pitch	1.07	27.2	
Minimum Width	4.7	119	
Width Increments	0.33	8.4	
Opening Size (approximate)	0.24 × 0.28	61 x 7 1	
	0.24 x 0.20	0.1 × 7.1	
Open Area	38	%	
Hinge Style	Ор	en	
Drive Method	Center	-driven	6
Product	Notes		6.0"
 Contact Intralox for precise belt may before designing equipment or orde Transfer edge is an integral part of this Uses headed rods. For custom belt widths please contact Belts available in 10 ft (3.05 m) length Molded tracking tabs fit into standard 1 ensuring proper belt alignment. Built with nylon rods for superior wear Also available in a 4.7 in (119 mm) wid (152 mm) wide double tracking tab bel For belt strength calculations, subtract width. When product is moving from the trans the transfer belt should be 0.06 in (1.5 belt. When product is moving from the the top of the belts should be level. You may need to include a fixed frame ONEPIECE™ Live Transfer belt price ensure that the ONEPIECE™ Live Tr it intersects with the takeaway belt. Se RAIL CONTOURS WITH 6.0 in. (152 r TRANSFER BELT" (page 442). The Series 900 ONEPIECE™ Live T sprockets smaller than a 3.5 in (89 mm) ff a 3.5 in (89 mm) pitch diameter is real be used. Additional Im See "Belt Selection Process" (page 5) See "Friction Factors" (page 13) 	asurements and si ring a belt. 5 belt. Customer Service. increments. -3/4 in (44.5 mm) v resistance. le single tracking ta t. 1.5 in (38 mm) fror fer belt to a takeaw mm) above the top infeed belt onto the support member b for to the actual trans ransfer belt does no e "Fig. 3–31 PARA mm) ONEPIECE ^{TA} ransfer belt should b) pitch diameter (10 quired, the split spre- formation	vearstrip tracks b belt and 6 in n actual belt ay belt, the top of of the takeaway e transfer edge, transfer edge, transfer edge, eneath the sfer. This will ot snag when <i>NBOLIC GUIDE</i> <i>IVE</i> not be used with 0 tooth) sprocket. ocket should not	6.0 in (152 mm) 0.344" (8.7 mm) 0.313" (7.9 mm) 6.0 in (152 mm) Double Tracking Tab belt (4.9 mm) 0.344" (8.7 mm) 0.344" (8.7 mm) 0.350" (8.9 mm) 0.350" (8.9 mm) 0.350" (7.9 mm) 0.313" (7.9 mm) 0.313" (7.9 mm) 0.313" (7.9 mm) 0.313" (7.9 mm) 0.313" (7.9 mm) 0.350" (7.9 mm

Belt Data								
Belt Material	Standard Rod Material Ø 0.18 in	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight	
(4.6 mm)		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²	
Polypropylene	Nylon	700	1040	34 to 220	1 to 104	0.93	4.54	
Acetal	Nylon	1480	2200	-50 to 200	-46 to 93	1.15	5.62	
FR-TPES	Nylon	1000	1490	40 to 150	4 to 66	1.63	7.95	

		Raised	l Rib
	in	mm	
Pitch	1.07	27.2	
linimum Width	2	51	
Vidth Increments	0.33	8.4	
Opening Size (approximate)	0.24 × 0.28	6.1 × 7.1	
Open Area	38	%	
Product Contact Area	35	%	Same I
linge Style	Ор	en	
Drive Method	Center-	driven	
Product	Notes		
Contact Intralox for precise stock status before designi a belt. Raised Ribs extend 3/16 in (4 module, with fully flush edges Uses headed rods.	belt measure ng equipment .7 mm) above 	ments and or ordering basic	

- product tippage and hang-ups.HR nylon is used in dry, elevated temperature applications.
- HR nylon belts use short rodlets to hold the main hinge rod in place. The rodlets are made from the same material as the main rod.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

Belt Data								
Belt Material	Standard Rod Material Ø 0.18 in	BS Belt Strength		Temperatu (contin	ire Range uous)	W	Belt Weight	
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²	
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	1.07	5.21	
Enduralox Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	1.07	5.21	
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	1.14	5.57	
Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.68	8.19	
HSEC Acetal	Polypropylene	800	1190	34 to 200	1 to 93	1.68	8.19	
HR Nylon ^a	Nylon	1200	1790	-50 to 240	-46 to 116	1.60	7.80	
HHR Nylon	Nylon	1200	1790	-50 to 310	-46 to 154	1.60	7.80	
Acetal ^b	Polyethylene	1000	1490	-50 to 70	-46 to 21	1.68	8.19	

a. This product cannot be used for food contact articles that will come in contact with food containing alcohol.

b. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

	Mold t	to Width			
	in	mm			
Pitch	1.07	27.2			
	1.1	29			
Molded Widths	1.5	37			
(Blue acetal)	1.8	46			
	2.2	55			
Opening Size (approximate)	0.24 × 0.28	6.1 × 7.1			
Open Area	38% - 40%				
Hinge Style	Closed				
Drive Method	Center-driven				

Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Series 900 Mold To Width belts are boxed in 10 ft (3.05 m) increments.
- Container stability is increased since the raised ribs span the entire belt width.
- Uses headed rods.
- These belts support both small and larger products, allowing easy change of product type.
- The 1.8 in (46 mm) belt is also molded in grey polypropylene for applications where higher friction is needed.
- All belts come with nylon rodlets standard, providing longer service life.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

a. 270 lb (122 kg) for 2.2 in. (55 mm) with two (2) sprockets.

to Width Raised Rib

- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

a. This product cannot be used for food contact articles that will come in contact with food containing alcohol.

b. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

	Mold to Width Flat Ton
--	------------------------

	in	mm		
Pitch	1.07	27.2		
	3.25	83		
Molded Widths	4.5	114		
	7.5	191		
	-	85		
Opening Size (approximate)	-	-		
Open Area	0%			
Hinge Style	Open			
Drive Method	Center-driven			

Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth, closed surface with fully flush edges.
- Uses headed rods.
- Tracking tabs provide lateral tracking.
- Series 900 Mold To Width belts are boxed in 10 ft (3.1 m) increments.
- One sprocket can be placed on the 3.25 in (83 mm) and 85 mm mold to width belt. Up to three sprockets can be placed on the 4.5 in (114 mm) mold to width belt. Up to five sprockets can be placed on the 7.5 in (191 mm) mold to width belt.
- The **Series 900 Mold To Width** belt should not be used with sprockets smaller than a 3.5 in (89 mm) pitch diameter (10 tooth) sprocket. If a 3.5 in (89 mm) pitch diameter is required, the split sprocket should not be used.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

SERIES 900

Series 900 Flat Top Mold to Width

0.384 in (8.9 mm) (9.8 mm) (9.8 mm) (9.8 mm) (9.245 in (6.2 mm) (6

	Belt Data											
Belt V	Nidth	Belt Material	Standard Rod Material Ø 0.18 in	BS	Belt Strength	Temperatu (contir	ure Range huous)	W	Belt Weight			
inch	(mm)		(4.6 mm)	lb	kg	°F	°C	lb/ft	kg/m			
3.25	83	Polypropylene	Nylon	130	59	34 to 220	1 to 104	0.37	0.55			
3.25	83	Acetal	Nylon	250	113	-50 to 200	-46 to 93	0.52	0.77			
4.5	114	Polypropylene	Nylon	263	120	34 to 220	1 to 104	0.52	0.77			
4.5	114	Acetal	Nylon	555	252	-50 to 200	-46 to 93	0.74	1.10			
7.5	191	Polypropylene	Nylon	438	199	34 to 220	1 to 104	0.83	1.24			
7.5	191	Acetal	Nylon	800	363	-50 to 200	-46 to 93	1.18	1.76			
1	85	Acetal	Nylon	500	227	-50 to 200	-46 to 93	0.50	0.74			

ONEPIECE™ Live Transfer Flat Top

	in	mm		
Pitch	1.07	27.2		
Minimum Width	4.7	119		
Width Increments	0.33	8.4		
Opening Size (approximate)	-	-		
Open Area	0%			
Hinge Style	Closed			
Drive Method	Center-driven			

Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Transfer edge is an integral part of this belt.
- Uses headed rods.
- For custom belt widths, please contact Customer Service.
- Belts available in 10 ft (3.05 m) length increments.
- Molded tracking tabs fit into standard 1-3/4 in (44.5 mm) wearstrip tracks ensuring proper belt alignment.
- Built with nylon rods for superior wear resistance.
- Also available in a 4.7 in (119 mm) wide single tracking tab belt and 6 in (152 mm) wide double tracking tab belt.
- When product is moving from the transfer belt to a takeaway belt, the top of the transfer belt should be 0.06 in (1.5 mm) above the top of the takeaway belt. When product is moving from the infeed belt onto the transfer edge, the top of the belts should be level.
- You may need to include a fixed frame support member beneath the **ONEPIECE™** Live Transfer belt prior to the actual transfer. This will ensure that the **ONEPIECE™** Live Transfer belt does not snag when it intersects with the takeaway belt. See "Fig. 3-31 PARABOLIC GUIDE RAIL CONTOURS WITH 6.0 in. (152 mm) ONEPIECE™ LIVE TRANSFER BELT" (page 442)
- The Series 900 **ONEPIECE™** Live Transfer belt should not be used with sprockets smaller than a 3.5 in (89 mm) pitch diameter (10 tooth) sprocket. If a 3.5 in (89 mm) pitch diameter is required, the split sprocket should not be used.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

6.0 in (152 mm) Double Tracking Tab belt

4.7 in (119 mm) Single Tracking Tab belt

Belt Data									
Belt Material	Standard Rod Material Ø 0.18 in	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight		
(4.6 mm)		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²		
Polypropylene	Nylon	700	1040	34 to 220	1 to 104	0.93	4.54		
cetal Nylon		1480	2200	-50 to 200	-46 to 93	1.50	7.30		

	P	erforated	Flat Top
	in	mm	
Pitch	1.07	27.2	
Minimum Width	2	51	
Width Increments	0.33	8.4	
Opening Size (approximate)	See Prod	uct Notes	
Open Area	See Prod	uct Notes	
Hinge Style	Clo	sed	
Drive Method	Center	-driven	
Product	Notes		• • • •
 Available hole sizes: Ø 1/8 in (3.2 mm) - 5% Open Ar Ø 5/32 in (4.0 mm) - 6% Open Ar Ø 3/16 in (4.8 mm) - 6% Open Ar Ø 3/16 in (4.8 mm) - 8% Open Ar All hole sizes include 3% open Ar Uses headed rods. Designed for vacuum transfer ar underside to reduce carryway br All holes have a radiused top ex good vacuum performance. Other hole dimensions and patt Series 900 Flat Top. For elevated temperatures, use HR nylon belts use short rodlets place and are made from the satisfication of the satisfication of	rea Area Area area at the hinge pplications, with lockage. Ige allowing quief erns can be crea stainless steel s s to hold the mair ame material as t		
See "Belt Selection Process" (page 5) See "Standard Belt Materials" (page 9) See "Special Application Belt Materials" (page 9) See "Eriction Eactors" (page 13)			0.213" 1.07" 1.07" 1.07" (5.4 mm) (27.2 mm) (27.2 mm) (27.2 mm) (27.2 mm) (27.2 mm) (27.3 mm) (27.2 mm) (27.4 mm) (2

			Belt Da	ata							
Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	BS Belt Temperature Range (continuous)		W	Belt Weight 1/8 in	W	Belt Weight 5/32 in	W	Belt Weight 3/16 in		
		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m ²	lb/ft ²	kg/m ²	lb/ft ²	kg/m ²
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	-	-	0.93	4.54	-	_
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	-	-	0.98	4.79	-	-
Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.48	7.23	1.46	7.11	1.43	6.98
HSEC Acetal	Polypropylene	800	1190	34 to 200	1 to 93	-	-	1.46	7.11	-	-
FR-TPES	Polypropylene	750	1120	40 to 150	4 to 66	-	_	1.59	7.76	-	_
HR Nylon ^a	Nylon	1200	1790	-50 to 240	-46 to 116	-	-	1.40	6.80	-	-
Acetal ^b	Polyethylene	1000	1490	-50 to 70	-46 to 21	1.48	7.23	1.46	7.11	1.43	6.98
UVFR	UVFR	700	1042	-34 to 200	1 to 93	2.04	9.96	2.04	9.96	2.04	9.96

a. This product cannot be used for food contact articles that will come in contact with food containing alcohol
b. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating. 1/8 in (3.2 mm) and 3/16 in (4.8 mm) hole sizes are available in acetal only.

SECTION 2

F

		Mesh	Тор™
	in	mm	
Pitch	1.07	27.2	
Minimum Width	2	51	
Width Increments	0.33	8.4	
Opening Size (approximate)	0.05 × 0.31	1.3 × 7.9	
Open Area	24	%	
Hinge Style	Ор	en	
Drive Method	Center	-driven	
Product	Notes		
 a belt. Fully flush edges. Uses headed rods. Ideal for fruit and vegetable p stemmed products and dewa 	processing, esp tering applicati	Top surface	
Additional li	nformatio	on	0.213" 1.07" 1.07" 1.07" (5.4 mm) (27.2 mm) (27.2 mm) (27.2 mm)
 See "Belt Selection Process" See "Standard Belt Materials See "Special Application Belt See "Friction Factors" (page 1) 	(page 5) " (page 9) " <i>Materials</i> " (pa 13)	(9.8 mm)	

intralox

Belt Data									
Belt Material	Standard Rod Material Ø 0.18 in	BS Belt Strength		Temperati (contir	ure Range nuous)	W	Belt Weight		
	(4.6 mm)		kg/m	°F	°C	lb/ft ²	kg/m²		
Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.39	6.79		
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.93	4.55		
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	0.99	4.84		

	Intralox [®] Diamond Friction Top							
	in	mm						
Pitch	1.07	27.2						
Minimum Width	3.0	76						
Width Increments	0.33	8.4						
Hinge Style	Op	ben	Children /					
Drive Method	Cente	r-driven						
Produc	t Notes							
 status before designing equivation Two material rubber modules privation Two material rubber modules privation Uses headed rods. Available in grey PP with black rubber, and natural PE with whithin the second product and belt are producted by the drive. Abrasion resistant resi	ipment or orderi provide a high fric ays and sprockets a rubber, white PF hite rubber. o conditions. If fric required, contact it may be necess elt at the backbend ods are recommer onditions, and pro- tive maximum deg ration when desig edge indents of 1 i Information page 5) page 9)	ng a belt. tion surface s. P with white tion values Intralox Sales ary to place d roller before aded. bduct gree of incline. ning conveyor in (25 mm) and	0.421" (0.421" (27.2 mm) (27.2					
 See Special Application Belt N See "Friction Factors" (bage 13) 	viateriais" (page 9) 3))						
 See "Special Application Belt N See "Friction Factors" (page 13) 	<i>Aaterials"</i> (page 9) 3)	Dol41						

Belt Data										
Base/Friction Color	Standard Rod Material	BS	Belt Strength	Temperatu (contir	Temperature Range (continuous)		Belt Friction Top Weight Hardness		Agency Acceptability	
	0.18 in (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²		FDA (USA)	EU MC ^b
Grey/Black	Polypropylene	1000	1490	34 to 150	1 to 66	1.40	6.83	45 Shore A	а	
White/White	Polypropylene	1000	1490	34 to 150	1 to 66	1.40	6.83	56 Shore A	а	с
Natural/White	Polyethylene	350	520	-50 to 120	-46 to 49	1.50	7.32	56 Shore A	а	С
	Base/Friction Color Grey/Black White/White Natural/White	Standard Rod Material Ø 0.18 in (4.6 mm) Grey/Black Polypropylene White/White Polypropylene Natural/White Polypthylene	Base/Friction Color Standard Rod Material Ø 0.18 in (4.6 mm) BS Grey/Black Polypropylene 1000 White/White Polypropylene 1000 Natural/White Polyethylene 350	Belt IBase/Friction ColorStandard Rod Material Ø 0.18 in (4.6 mm)BSBelt StrengthIb/ftkg/mGrey/BlackPolypropylene10001490White/WhitePolypropylene10001490Natural/WhitePolyethylene350520	Belt Data Base/Friction Color Standard Rod Material Ø 0.18 in (4.6 mm) BS Belt Strength Temperatu (contin b/ft Brey/Black Polypropylene 1000 1490 34 to 150 White/White Polypropylene 1000 1490 34 to 150 Natural/White Polypthylene 350 520 -50 to 120	Belt Data Base/Friction Color Standard Rod Material Ø 0.18 in (4.6 mm) BS Belt Strength Temperature Range (continuus) Ib/ft kg/m °F °C Grey/Black Polypropylene 1000 1490 34 to 150 1 to 66 White/White Polypropylene 1000 1490 34 to 150 1 to 66 Natural/White Polyethylene 350 520 -50 to 120 -46 to 49	Belt Data Base/Friction Color Standard Rod Material Ø 0.18 in (4.6 mm) BS Belt Strength Temperature Range (continuous) W Ib/ft kg/m °F °C lb/ft ² Grey/Black Polypropylene 1000 1490 34 to 150 1 to 66 1.40 White/White Polypropylene 1000 1490 34 to 150 1 to 66 1.40 Natural/White Polyethylene 350 520 -50 to 120 -46 to 49 1.50	Belt Data Base/Friction Color Standard Rod Material 0.18 in (4.6 mm) BS Belt Strength Temperature Range (continuous) W Belt Weight Ib/ft kg/m °F °C lb/ft² kg/m² Grey/Black Polypropylene 1000 1490 34 to 150 1 to 66 1.40 6.83 White/White Polypropylene 350 520 -50 to 120 -46 to 49 1.50 7.32	Belt Data Base/Friction Color Standard Rod Material 0.18 in (4.6 mm) BS Belt Strength Temperature Range (continuous) W Belt Weight Friction Top Hardness Grey/Black Polypropylene 1000 1490 34 to 150 1 to 66 1.40 6.83 45 Shore A White/White Polypropylene 1000 1490 34 to 150 1 to 66 1.40 6.83 56 Shore A Natural/White Polypthylene 350 520 -50 to 120 -46 to 49 1.50 7.32 56 Shore A	Belt Data Base/Friction Color Standard Rod Material 0 0.18 in (4.6 mm) BS Belt Strength Temperature Range (continuous) W Belt Weight Friction Top Hardness Agency Acc FDA (USA) Grey/Black Polypropylene 1000 1490 34 to 150 1 to 66 1.40 6.83 45 Shore A a White/White Polypropylene 1000 1490 34 to 150 1 to 66 1.40 6.83 56 Shore A a Natural/White Polyethylene 350 520 -50 to 120 -46 to 49 1.50 7.32 56 Shore A a

Fully compliant

a - FDA Compliant with Restriction: Do not use in direct contact with fatty foods.

b - European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.

c - EU compliant with Restriction: Do not use in direct contact with fatty foods.

SECTION 2

Base/Friction Color	Standard Rod Material	BS	Belt Strength	Temperate (contir	ure Range nuous)	Belt Weight		Friction Top Hardness
	Ø 0.18 in (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²	
Grey/Black	Polypropylene	1000	1490	34 to 150	1 to 66	1.50	7.32	45 Shore A

34 to 150

1 to 66

1.50

1490

1000

56 Shore A

7.32

Agency Acceptability

EU MC^b

с

FDA (USA)

а

а

Polypropylene Fully compliant

Polypropylene

Base Belt Material

a - FDA Compliant with Restriction: Do not use in direct contact with fatty foods.

White/White

b - European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.

Polypropylene

EU compliant with Restriction: Do not use in direct contact with fatty foods.

1	2	7

SECTION 2

006

Mol	d to Width	Square Friction Top	
	in	mm	
Pitch	1.07	27.2	
Molded Width	1.1	29	
Hinge Style	Clos	sed	
Drive Method	Center	-driven	
Produ	ct Notes		
 stock status before designed belt. Two material rubber modes surface without interfering. Uses headed rods. Available in grey PP with black rubber, and blue actions. Not recommended for base values between product a Intralox Sales Engineering. 	igning equipment ules provide a high g with carryways a black rubber, grey tetal with black rub ck-up conditions. If and belt are require g.		
Additiona	I Information	= 1.07" NOM. → 1.07" NOM. → 0.20" (27.2 mm) → (27.2 mm) → (27.2 mm) → (27.1 mm)	
 See "Belt Selection Proce See "Standard Belt Mater See "Special Application See "Existing Easters" (see 	ess" (page 5) rials" (page 9) Belt Materials" (pa	0.41" (10.4 mm) 10.4 mm) 10.4 mm) 10.58" (14.7 mm) 10.58"	

• See "Friction Factors" (page 13)

se/Friction Color	Standard Rod Material	BS	Belt Strength	Temperati (contir	ure Range nuous)	W	Belt Weight	Friction Top Hardness	Agency Acc	eptability
	0.18 in (4.6 mm)	lb	kg	°F	°C	lb/ft	kg/m		FDA (USA)	EU MC ^b
ey/Black	Nylon	65	29	34 to 150	1 to 66	0.17	0.25	45 Shore A	а	
ey/Black	Nylon	140	64	-10 to 130	-23 to 54	0.21	0.31	54 Shore A		
ie/Black	Nylon	140	64	-10 to 130	-23 to 54	0.21	0.31	54 Shore A		
e) e)	e/Friction Color //Black //Black //Black	e/Friction Color Standard Rod Material Ø 0.18 in (4.6 mm) //Black Nylon //Black Nylon	e/Friction Color Standard Rod Material Ø 0.18 in (4.6 mm) Ib //Black Nylon 65 //Black Nylon 140	Standard Rod Material Ø 0.18 in (4.6 mm) BS Belt Strength //Black Nylon 65 29 //Black Nylon 140 64	Back Nylon 65 29 34 to 150 //Black Nylon 140 64 -10 to 130	Back Nylon 65 29 34 to 150 1 to 66 //Black Nylon 140 64 -10 to 130 -23 to 54	Black Nylon 65 29 34 to 150 1 to 66 0.17 //Black Nylon 140 64 -10 to 130 -23 to 54 0.21	Black Nylon 65 29 34 to 150 1 to 66 0.17 0.25 //Black Nylon 140 64 -10 to 130 -23 to 54 0.21 0.31	Black Nylon 65 29 34 to 150 1 to 66 0.17 0.25 45 Shore A //Black Nylon 140 64 -10 to 130 -23 to 54 0.21 0.31 54 Shore A	Back Standard Rod Belt Temperature Range W Belt Friction Top Agency Acc V/Black Nylon 65 29 34 to 150 1 to 66 0.17 0.25 45 Shore A a //Black Nylon 140 64 -10 to 130 -23 to 54 0.21 0.31 54 Shore A

Fully compliant

Г

a - FDA Compliant with Restriction: Do not use in direct contact with fatty foods.

b - European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.

c - EU compliant with Restriction: Do not use in direct contact with fatty foods.

Belt Data												
Base Belt Material	Base/Friction Color	e/Friction Standard Rod Color Material		Belt Strength	Temperatu (contir	Temperature Range (continuous)		Belt Weight	Friction Top Hardness	Agency Acc	Agency Acceptability	
	1	Ø 0.18 in (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²		FDA (USA)	EU MC ^b	
Polypropylene	Grey/Black	Polypropylene	1000	1490	34 to 150	1 to 66	1.40	6.83	45 Shore A	а		
Polypropylene	White/White	Polypropylene	1000	1490	34 to 150	1 to 66	1.40	6.83	56 Shore A	а	с	
Polypropylene	High Performance FT Blue/Blue	Polypropylene	1000	1490	34 to 212	1 to 100	1.40	6.83	59 Shore A	а	с	
- Fully compliant					· · · · ·			· · · · ·				

a - FDA Compliant with Restriction: Do not use in direct contact with fatty foods.

b - European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.

EU compliant with Restriction: Do not use in direct contact with fatty foods.

Flush Grid with Insert Rollers in mm Pitch 1.07 27.2 Minimum Width 6 152 Width Increments 1.00 25.4 Opening Size (approx.) 0.24×0.28 6.1×7.1 Open Area 38% Hinge Style Open Drive Method Center-driven **Product Notes**

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- For applications where low back pressure accumulation is required.
- Acetal rollers
- Uses headed rods.
- Standard roller spacings across belt width: 2 in (51 mm), 3 in (76 mm), or 4 in (102 mm) inline or staggered.
- Standard roller spacings along belt length: 1.07 in (27.2 mm), 2.14 in (54.4 mm).
- Minimum 1.0 in (25.4 mm) roller indent.
- Contact Customer Service for non-standard roller placement options.
- Sprockets must NOT be placed inline with rollers.
- For low back pressure applications, place wearstrip between rollers. For driven applications, place wearstrip directly under rollers.
- Back-up load is 5% to 10% of product weight.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

			-	EEEE
_	1.07"	1.07"		
	(27.2 mm)	(27.2 mm	n)	
τO	Ŕ	5)	Ø	

Ø 0.75" (19.1 mm

0.344"

SERIES 900

	Belt Data										
Belt Material	Standard Rod Material Ø 0.18 in	B	S	Belt Strength				Temperatur (continu	re Range uous)	W	Belt Weight
	(4.6 mm)		Roller Width Spacing								
		2 in	51 mm	3 in	76 mm	4 in	102 mm				
		lb/ft	kg/m	lb/ft	kg/m	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene	Polypropylene	490	730	550	820	590	880	34 to 220	1 to 104	0.76	3.71
Acetal	Polypropylene	1030	1530	1170	1740	1240	1850	34 to 200	1 to 93	1.15	5.61

....

0.172"

(4.4 mm)

		Nub T	ор™
	in	mm	
Pitch	1.07	27.2	
Minimum Width	10	254	
Width Increments	0.33	8.4	
Open Area	0	%	
Product Contact Area	79	%	
Hinge Style	Clo	sed	
Drive Method	Center	-driven	a Total
 Product Contact Intralox for precise stock status before designi a belt. Fully flush edges. Uses headed rods. Ideal for batch-off application: Minimum nominal alternating (51 mm) & 3 in (76 mm). 	Notes belt measure ng equipment s. edge indents		
Additional In	nformati	on	0.31"
 See "Belt Selection Process" See "Standard Belt Materials See "Special Application Belt See "Friction Factors" (page 1) 	(page 5) " (page 9) <i>Materials</i> " (pa 13)	0.21" (5.4 mm) 0.21" (27.2 mm) 0.48" (27.2 mm) (27.2 m	

intralox

Belt Data							
Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	BS	Belt Strength ^a	Temperature Range (continuous)		V	Belt Weight
		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.98	4.78

a. When using steel sprockets, the belt strength for polyethylene is 240 lb/ft (360 kg/m). Contact Customer Service for availability of polyurethane sprockets.
Flush Grid Nub Top™									
	in	mm							
Pitch	1.07	27.2							
Minimum Width	6	152							
Width Increments	0.33	8.4							
Opening Size (approximate)	0.24 × 0.28	6.1 × 7.1							
Open Area	38	%							
Product Contact Area	39	%							
Hinge Style	Ор	en							
Drive Method	Center	-driven	3. A T B C						
Product	Notes								
 Contact intratox for precise stock status before designi a belt. Can only be used with Series flights. Fully flush edges. Uses headed rods. Belts are built with Flush Grid nominal alternating edge inder (51 mm) pattern. Not recommended for back-uvalues between product and Intralox Sales Engineering. 	a edge modules ents of 1 in (25 belt are require	d base s. Minimum mm) and 2 in f friction ed, contact							
Additional I	nformatio	on	0.050" (7.4 mm) 0.394" (1.3 mm)0.068" (10.0 mm)						
 See "Belt Selection Process" See "Standard Belt Materials See "Special Application Belt See "Friction Factors" (page 	(page 5) "(page 9) t <i>Materials</i> "(pa 13)	(1.7 mm) 0.222" (5.6 mm) (27.2 mm)							

Belt Data								
Belt Material	Standard Rod Material Ø 0.18 in	BS	Belt Strength ^a	Temperat (contin	ure Range nuous)	W	Belt Weight	
	(4.0 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²	
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.80	3.91	

a. When using steel sprockets, the belt strength for polyethylene is 240 lb/ft (360 kg/m).

Sprocket and Support Quantity Reference									
Belt Wid	dth Range ^a	Minimum Number of	W	/earstrips					
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway ^c					
2	51	1	2	2					
4	102	1	2	2					
6	152	2	2	2					
7	178	2	3	2					
8	203	2	3	2					
10	254	3	3	2					
12	305	3	3	2					
14	356	5	4	3					
15	381	5	4	3					
16	406	5	4	3					
18	457	5	4	3					
20	508	5	5	3					
24	610	7	5	3					
30	762	9	6	4					
32	813	9	7	4					
36	914	9	7	4					
42	1067	11	8	5					
48	1219	13	9	5					
54	1372	15	10	6					
60	1524	15	11	6					
72	1829	19	13	7					
84	2134	21	15	8					
96	2438	25	17	9					
120	3048	31	21	11					
144	3658	37	25	13					
For Other Widths, Use Odd Number of Sprockets ^d at Maximum 4 in. (102 mm) Ç Spacing			Maximum 6 in. (152 mm) & Spacing	Maximum 12 in. (305 mm) & Spacing					

If your belt width exceeds a number listed in the table, refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 0.33 in. (8.4 mm) increments beginning with minimum width of 2 in. (51 mm). If the actual width is critical, contact Intralox Customer Service. a. b.

These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications. Caution when using Friction Top. Contact Intralox Customer Service for friction top applications. c.

d. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 410 for lock down location.

a.

SERIES 900

1	3	3

							Molde	d Spro	ocketa					
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	ŀ	Available E	Bore Size	S				
Teeth (Chordal	Pitch	Pitch	Outer	Outer	Hub Width	Hub	U.S.	U.S. Sizes		U.S. Sizes		Metric Sizes		
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in ^b	Square in	Round mm ^b	Square mm				
6 (13.40%)	2.1 ^c	53 ^c	2.2	56	0.75	19		1.0		25				
9	3.1	79	3.2	81	1.0	25	1	1.0	25	25				
(6.03%)								1.5		40				
10	3.5	89	3.6	91	0.75	19		1.0		40				
(4.89%)								1.5						
12 (3.41%)	4.1	104	4.3	109	1.5	38	1 to 1-1/2	1.5	25 to 40	40				
							1-15/16 to 2-3/16		50 to 55					
17 (1.70%)	5.8	147	5.9	150	1.5	38	1-3/16 to 1-1/2		30 to 40					
18 (1.52%)	6.1	155	6.3	160	1.5	38	1 to 1-1/2	1.5	25 to 40	40				
							1-15/16	2.5	50 to	60				
									55	65				
					1.0	25	2-3/16							
20 (1.23%)	6.8	173	7.0	178	1.5	38	1 to 1-1/2	1.5	25 to 40	40				
							1-15/16	2.5	50 to	60				
							to 2-3/16		55	65				

SECTION 2

Contact Customer Service for lead times. When using polyurethane sprockets, the Belt Strength for belts rated over 650 lb/ft (967 kg/m) will be de-rated to 650 lb/ ft (967 kg/m) when using 1.5" (40 mm) bore sprockets and belt rated over 1,100 lb/ft (1,637 kg/m) will be de-rated to 1,100 lb/ft (1,637 kg/m) when using 2.5" 006 (60 mm) bore sprockets. All other belts will maintain their published rating. The temperature range for Polyurethane sprockets is 0° F (-18 °C) to 120 °F (49 °C). Contact Customer Service for availability of polyurethane sprockets.

b. Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have set screws for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket needs to be locked down. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

c. See the Retaining Rings section for more information on retaining the 2.1 in (53 mm) pitch diameter sprocket.

						E	Z Clea	n™ Sp	rocket	a
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	Available E	Bore Size	S
(Chordal	Dia in	Dia	Dia in	Dia	Width	Width	U.S.	Sizes	Metric	: Sizes
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in ^b	Square in	Round mm ^b	Square mm
12 (3.41%)	4.1	104	4.3	109	1.5	38		1.5		40
18 (1.52%)	6.1	155	6.3	160	1.5	38		1.5		40

Contact Customer Service for lead times. When using polyurethane sprockets, the Belt Strength for belts rated over 650 lb/ft (967 kg/m) will be de-rated to 650 lb/ a. ft (967 kg/m) when using 1.5" (40 mm) bore sprockets and belt rated over 1,100 lb/ft (1,637 kg/m) will be de-rated to 1,100 lb/ft (1,637 kg/m) when using 2.5" (60 mm) bore sprockets. All other belts will maintain their published rating. The temperature range for polyurethane sprockets is 0° F (-18 °C) to 120 °F (49 °C). Contact Customer Service for availability of polyurethane sprockets.

b. Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have set screws for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket needs to be locked down. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

intralox

						S	plit Me	etal Sp	rocke	t ^a	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom. Available Bore Sizes					
Teeth (Chordal	Pitch Dia in	Pitch Dia	Outer Dia in	Outer Dia	Hub Width	Hub Width	U.S.	Sizes	Metric	: Sizes	
Action)	Dia. III	mm	Dia.iii	mm	in	mm	Round in ^b	Square in	Round mm ^b	Square mm	
10 (4.89%)	3.5	89	3.6	91	1.5	38		1.5		40	
12 (3.41%)	4.1	104	4.3	109	1.5	38		1.5		40	
15	5.1	130	5.3	135	1.5	38	1-3/16	1.5			
(2.19%)							1-1/4				and the second s
17 (1.70%)	5.8	147	6.1	155	1.5	38			40	40	
18	6.1	155	6.3	160	1.5	38	1-1/4	1.5		40	
(1.52%)							1-1/2	2.5		60	
20	6.8	173	7.0	178	1.5	38	1-1/4	1.5		40	
(1.23%)								2.5		60	
28 ^c	9.8	249	10.0	254	1.5	38		1.5		40	
(0.63%)								2.5		60	

a. Contact Customer Service for lead times.

b. Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have set screws for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket needs to be locked down. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

c. The 9.8 in (249 mm) Pitch Diameter 28 tooth split sprocket should not be used with any Series 900 style acetal belt. A special 9.7 in (246 mm) Pitch Diameter split sprocket must be used instead. Contact Customer Service for lead times.

	Split	Meta	al wit	h Pol	yureth	nane (FDA) J	oining	Plate	s Redu
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	ŀ	Available E	Bore Size	s
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.	Sizes	Metric	Sizes
Action)	Dia. In	mm	Dia. In	Dia. mm	in	mm	Round in ^b	Square in	Round mm ^b	Square mm
15 (2.19%)	5.1	130	5.3	135	1.5	38		1.5		40
17 (1.70%)	5.8	147	6.1	155	1.5	38				40
18	6.1	155	6.3	160	1.5	38		1.5		40
(1.52%)								2.5		60
20	6.8	173	7.0	178	1.5	38		1.5		40
(1.23%)								2.5		
28 ^c (0.63%)	9.8	249	10.0	254	1.5	38		2.5		60

a. Contact Customer Service for lead times.

b. Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have set screws for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket needs to be locked down. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.
 c. The 9.8 in (249 mm) Pitch Diameter 28 tooth split sprocket should not be used with any Series 900 style acetal belt. A special 9.7 in (246 mm) Pitch Diameter

c. The 9.8 in (249 mm) Pitch Diameter 28 tooth split sprocket should not be used with any Series 900 style acetal belt. A special 9.7 in (246 mm) Pitch Diameter split sprocket must be used instead. Contact Customer Service for lead times.

1	3	5

			Ν	lolde	d Too	th Pla	te Spli	t Glas	s Fille	d Nylo
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	Available E	Bore Size	s
Teeth (Chordal	Pitch	Pitch	Outer	Outer	Hub Width	Hub Width	U.S.	Sizes	Metric	: Sizes
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in ^b	Square in	Round mm ^b	Square mm
15	5.1	130	5.3	135	1.5	38	1	1.5	30	40
(2.19%)							1-3/16		40	
17	5.8	147	6.1	155	1.5	38			30	40
(1.70%)									40	
18	6.1	155	6.3	160	1.5	38	1-1/4	1.5		40
(1.52%)							1-1/2	2.5		60
20	6.8	173	7.0	178	1.5	38	1-1/4	1.5		40
(1.23%)								2.5	1	60

a. Contact Customer Service for lead times.

b. Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have set screws for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket needs to be locked down. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

		Flat Top Base Flight				
Available I	Flight Height	Available Materials				
in	mm					
1	25					
2	51	Polypropylene, Polyethylene, Acetal				
3	76	7				
Note: Flights can be cut down to custom heights with a minimum height of 0.25						

in (13 mm).

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: Flat Top flight is smooth (Streamline) on both sides.

Note: The minimum indent (without sideguards) is 0.7 in (17.8 mm).

Flush Grid Nub Top Base Flight (Double No-Cling)

Available	Flight Height	Available Materials					
in	mm						
4	102	Polypropylene, Acetal					

Note: Flights can be cut down to custom heights with a minimum height of 0.25 in (13 mm).

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: No-Cling vertical ribs are on both sides of the flight.

Note: The minimum indent (without sideguards) is 0.7 in (17.8 mm).

Flush Grid Base Flights (Streamline/No-Cling)

Available Flight Height		Available Materials					
in	mm	Available iviaterials					
1	25	Polypropylene, Polyethylene, Acetal, HR					
2	51	HHR Nylon, HR Nylon ^a , Detectable					
Polypropylene ^b							
Note: Flights can be cut down to custom heights with a minimum height of 0.25							

in (13 mm).

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: One side of the Flush Grid flight is smooth (Streamline) while the other is ribbed vertically (No-Cling).

Note: The minimum indent (without sideguards) is 0.7 in (17.8 mm).

a. This product may not be used for food contact articles that will come in contact with food containing alcohol.

 b. Detectable Polypropylene can be sensed with metal detection equipment. Testing the material on a metal detector in a production environment is the best method for determining detection sensitivity.

	Open Flush Grid Flush Edge Base Flights (No-Cling)							
Available Flight Height		Available Materials						
in	mm	Available iviaterials						
2	51	Polypropylene, Heat Resistant Nylon, High						
		Heat Resistant Nylon						
Note: Flights car	n be cut down to a							

in (13 mm). Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: Flight is molded with a 1 in (25 mm) indent. Can be machined to any indent between 1 in (25 mm) and 3 in (76 mm).

Note: Flight is ribbed vertically (no-cling) on both sides.

		Flat Top Base Flights (S ⁴	reamline Rubber)
Available F	Flight Height	Available Materiala	
in	mm	Available Materials	
1	25		
2	51	Polypropylene	
3	76		C.
Note: Each fligh are required. Note: 3 in (76 m Note: Minimum Note: Flights ca in (13 mm). Note: Black rub flights (Restricte Note: Black rub flights have a ha of 25 Shore A	nt rises out of the c nm) flights are avai indent (without sid an be cut down to c ober on grey PP flig ed). Grey rubber or ober flights have a h ardness of 56 Shor	enter of its supporting module. No fasteners lable in grey rubber only. eguards) is 0.7 in (17.8 mm). ustom heights with a minimum height of 0.25 hts (Restricted). White rubber on white PP or grey PP flights (Not Compliant). nardness of 45 Shore A and White rubber re A and grey rubber flights have a hardness	A COCCUCICATION OF

Sideguards

Availab	le Sizes	Available Materiala			
in	mm	Available Materials			
2	51	Polypropylene, Polyethylene, Acetal, HR Nylon ^a , HHR Nylon			
Note: Sideguard of the belt, with r Note: The minim sideguards and t Note: When goir fan out, opening products to fall o around the 12 to Note: Standard (product friendly) conveyor.	s have a standard to fasteners requi- lum indent is 1 in the edge of a fligh- ng around the 6, 9 a gap at the top of ut. The sideguard oth and larger spr sideguard orientar). If needed, sideg	d overlapping design and are an integral part red. (25.4 mm). The standard gap between the t is 0.2 in (5 mm). 0, and 10 tooth sprockets, the sideguards will of the sideguard which might allow small ls stay completely closed when wrapping rockets. tion is angled inward toward the product guards can be angled outward toward the			

a. This product may not be used for food contact articles that will come in contact with food containing alcohol.

	Finger Transfer Plates						
Availab	le Widths	Number of	Available Materials				
in	mm	Fingers					
6	152	18	Apotol				
4	102	12	Acelai				
Note: Eliminate: between the beli belt engages its Note: Finger tra shoulder bolts s foreign materials	s product transfer t's ribs allowing a s sprockets. Insfer plates are in upplied. Caps sna s out of the slots.	and tipping proble smooth continuation stalled easily on the place	ems. The 18 fingers extend on of the product flow as the the conveyor frame with the e over the bolts, keeping				

Note: 4 in (102 mm) (12 finger) are for use only when retrofitting from Series 100 Raised Rib to Series 900 Raised Rib. The 4 in (102 mm) wide cannot be mixed with the 6 in (152 mm) wide finger plates.

Hold Down Tabs

in mm Available Materials 0.16 4.1 Acetal	Available Meteriala	Available Clearance		
0.16 4.1 Acetal	Available Materials	mm	in	
Acetal	Acotal	4.1	0.16	
0.35 0.9	Aceiai	8.9	0.35	

Note: The 0.16 in (4.1 mm) tab is available in both Flat Top and Flush Grid styles. The 0.35 in (8.9 mm) tab is available with a Flat Top style. The top of this tab sits 0.04 in below the top of Flat Top belts and is level with the top of Flush Grid belts.

Note: Tabs are 1.4 in (36 mm) wide.

Note: Tabs are placed on every other row.

Note: Minimum indent is 0.7 in (17.8 mm).

Note: A minimum of 2.7 in (69 mm) is required between tabs to accommodate 1 sprocket.

Note: Carryway wearstrip or rollers that engage the tabs are only required at the transition between horizontal sections and angled sections. A carryway radius should be designed at this transition.

Note: Care should be taken to ensure that adequate lead-in radii and/or angles are used to prevent the possibility of snagging the tab on the frame.

Note: Hold down tabs do not work with 2.1 in (53 mm) and 3.1 in (79 mm) Pitch Diameter sprockets. 3.5 in (89 mm) Pitch Diameter sprockets may be used with a 1.5 in (40 mm) square bore.

006

SERIES 900

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

Complete descriptions of the dimensions are listed on page 423.

Sprocket Description		A		В		С		E		
Pitch D	Diameter		Range (Botto	m to Top)	•		•		•	
in.	mm	No. Teeth	in.	mm	ın.	mm	ın.	mm	ın.	mm
	SERIES	900 FLUSH G	BRID, FLAT TOP,	PERFORATE	ED FLAT	TOP, M	IESH TO	P, NUB	TOP ^a	
2.1	53	6	0.75-0.90	19-23	1.25	32	2.28	58	1.51	38
3.1	79	9	1.30-1.39	33-35	1.51	38	3.20	81	1.75	44
3.5	89	10	1.47-1.56	37-40	1.70	43	3.60	91	2.01	51
4.1	104	12	1.82-1.90	46-48	1.74	44	4.25	108	2.51	64
5.1	130	15	2.34-2.40	60-61	2.00	51	5.20	132	2.77	70
5.8	147	17	2.69-2.74	68-70	2.13	54	5.80	147	3.15	80
6.1	155	18	2.86-2.91	73-74	2.20	56	6.20	155	3.30	84
6.8	173	20	3.21-3.25	81-82	2.32	59	6.75	171	3.86	98
9.8	249	28	4.58	116	2.96	75	9.70	246	5.02	128
			SERIES 900	FLUSH GRID	NUB TO	DP ^a				
2.1	53	6	0.75-0.90	19-23	1.22	31	2.19	56	1.35	34
3.1	79	9	1.30-1.39	33-35	1.52	39	3.17	81	1.85	47
3.5	89	10	1.47-1.56	37-40	1.64	42	3.51	89	2.02	51
4.1	104	12	1.82-1.90	46-48	1.75	44	4.19	106	2.35	60
5.1	130	15	2.34-2.40	59-61	1.95	50	5.19	132	2.86	73
5.8	147	17	2.69-2.74	68-70	2.09	53	5.87	149	3.20	81
6.1	155	18	2.86-2.91	73-74	2.12	54	6.21	158	3.37	86
6.8	173	20	3.21-3.25	82-83	2.25	57	6.89	175	3.70	94
9.8	249	28	4.58	116	2.92	74	9.61	244	5.06	129
SERIES 900 RAISED RIB, FLUSH GRID WITH INSERT ROLLERS, OPEN GRID ^a										
2.1	53	6	0.75-0.90	19-23	1.25	32	2.28	58	1.73	44
3.1	79	9	1.30-1.39	33-35	1.51	38	3.20	81	1.97	50
3.5	89	10	1.47-1.56	37-40	1.70	43	3.60	91	2.23	57
4.1	104	12	1.82-1.90	46-48	1.74	44	4.25	108	2.73	69
5.1	130	15	2.34-2.40	60-61	2.00	51	5.20	132	2.99	76
5.8	147	17	2.69-2.74	68-70	2.13	54	6.00	152	3.40	86
6.1	155	18	2.86-2.91	73-74	2.20	56	6.20	157	3.52	89

Sprocket Description		A		В		С		E		
Pitch D	Diameter	No Tooth	Range (Bottor	m to Top)			:		in	
in.	mm	NO. Teeth	in.	mm	In.	mm	In.	mm	in.	mm
6.8	173	20	3.21-3.25	81-82	2.32	59	6.75	171	4.08	104
9.8	249	28	4.58	116	2.96	75	9.70	246	5.24	133
			SERIES 90	0 OPEN FLU	SH GRI	D ^a				
2.1	53	6	0.75-0.90	19-23	1.25	32	2.28	58	1.51	38
3.1	79	9	1.30-1.39	33-35	1.51	38	3.20	81	1.75	44
3.5	89	10	1.47-1.56	37-40	1.70	43	3.60	91	2.01	51
4.1	104	12	1.82-1.90	46-48	1.74	44	4.25	108	2.51	64
5.1	130	15	2.34-2.40	60-61	2.00	51	5.20	132	2.77	70
5.8	147	17	2.69-2.74	68-70	2.13	54	5.80	147	3.15	80
6.1	155	18	2.86-2.91	73-74	2.20	56	6.20	155	3.30	84
6.8	173	20	3.21-3.25	81-83	2.32	59	6.75	171	3.86	98
9.8	249	28	4.58	116	2.96	75	9.70	246	5.02	128
	SERIES	900 DIAMON	ID FRICTION TOP	, FLAT FRIC		DP, SQU	ARE FR		TOP ^a	
2.1	53	6	0.75-0.90	19-23	1.25	32	2.28	58	1.76	45
3.1	79	9	1.30-1.39	33-35	1.51	38	3.20	81	1.96	50
3.5	89	10	1.47-1.56	37-40	1.70	43	3.60	91	2.22	56
4.1	104	12	1.82-1.90	46-48	1.74	44	4.25	108	2.72	69
5.1	130	15	2.34-2.40	60-61	2.00	51	5.20	132	2.98	76
5.8	147	17	2.69-2.74	68-70	2.13	54	6.00	152	3.40	86
6.1	155	18	2.86-2.91	73-74	2.20	56	6.20	157	3.51	89
6.8	173	20	3.21-3.25	81-82	2.32	59	6.75	171	4.08	104
9.8 ^b	249	28	4.58	116	2.96	75	9.70	246	5.23	133
SERIES 900 MOLD TO WIDTH 29 MM SQUARE FRICTION TOP ^a										
2.1	53	6	0.75-0.90	19-23	1.27	32	2.38	60	1.54	39
3.1	79	9	1.30-1.39	33-35	1.58	40	3.36	85	2.04	52
3.5	89	10	1.47-1.56	37-40	1.70	43	3.70	94	2.21	56
4.1	104	12	1.82-1.90	46-48	1.88	48	4.38	111	2.54	65
5.1	130	15	2.34-2.40	59-61	2.10	53	5.38	137	3.05	77
5.8	147	17	2.69-2.74	68-70	2.32	59	6.06	154	3.39	86
6.1	155	18	2.83-2.88	72-73	2.31	59	6.34	161	3.52	89
6.8	173	20	3.21-3.25	82-83	2.42	61	7.08	180	3.89	99
9.8	249	28	4.58-4.61	116-117	2.92	74	9.80	249	5.25	133

a. Refer to "Anti-sag carryway wearstrip configuration" (page 428), for alternative layouts for the "B" dimension.
b. The 9.8 in. (249 mm) Pitch Diameter 28 tooth Split Sprocket should not be used with any Series 900 style Acetal Belt. A special 9.7 in (246 mm) Pitch Diameter.Split Sprocket must be used instead.

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Descriptio	Gap		
Pitch D	iameter	No. Tooth	in	
in.	mm	NO. Teeth		
2.1	53	6	0.147	3.7
3.1	79	9	0.095	2.4
3.5	89	10	0.084	2.1
4.1	104	12	0.071	1.8
5.1	130	15	0.057	1.4
5.8	147	17	0.050	1.3
6.1	155	18	0.047	1.2
6.8	173	20	0.042	1.1
9.8	249	28	0.029	0.7

		Гор	
	in	mm	
Pitch	0.60	15.2	
Minimum Width	3	76	
Width Increments	0.50	12.7	
Opening Sizes (approx.)	-	-	
Open Area	00	%	
Hinge Style	Clo	sed	
Drive Method	Center/Hir	nge-Driven	
Product	Notes		
 stock status before designi a belt. Smooth, closed upper surface Uses headed rods. Underside design and small p smoothly around nosebars. Can be used over 0.75 in (19 for tight transfers. Mini-pitch reduces chordal ac gap. Minimal back tension required Closed edges on one side of Lug tooth sprockets improve make installation easier. 	ng equipment e with fully flus bitch allow the .1 mm) diamet tion and transf d. the belt. sprocket enga		
Additional I	nformation	(15.2 mm) (15.2 mm) (15.2 mm) (15.2 mm) (4.3 mm)	
 See "Belt Selection Process" See "Standard Belt Materials See "Special Application Belt See "Friction Factors" (page 1) 	(page 5) "(page 9) <i>Material</i> s" (pa 13)	0.34" (8.7 mm)	

Belt Data							
Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight
		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Acetal	Polypropylene	1500	2232	34 to 200	1 to 93	1.55	7.57
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.07	5.22
Polyethylene	Polyethylene	600	893	-50 to 150	-46 to 66	1.11	5.42
HR Nylon	Nylon	1000	1490	-50 to 240	-46 to 116	1.31	6.43

Insert Roller						
	in	mm				
Pitch	0.60	15.2				
Minimum Width	6	152				
Width Increments	3.00	76	Standing Do Do			
Open Area	12	.5%				
Hinge Style	Clo	osed				
Drive Method	Center/Hi	nge-Driven				
Product	Notes					
 Contact Intralox for precise bel status before designing equipm Yellow acetal rollers are 0.3 in (7.4 mm) diameter and are located on Roller density is 240 rollers/ft² (25 Rollers protrude above and below Rollers are spaced in groups with roller zones. For low back pressure application rollers. For activated roller application rollers. For activated roller application for tight transfers. Contact Intralox information. Belt can be supported using 1.38 i parallel wearstrips. Sprocket locations are spaced 3.0 Roller indent from edge of belt to mm). Minimal back tension required. Fully flush edges on one side and side. Uses headless rods. 6 in (152 mm) belt is Mold-To-Wid roller indent. Belt widths above 6 in (152 mm) a Additional Interval. 	t measureme nent or orderi 6 mm) wide an the belt rod. 580 rollers/m ²) with belt surfa 1.5 in (38.1 m as, place wears ations, place measure ations, place wears ations, place wears ations, place measure ations, pl					
Additional In	formation	l	0.60" NOM. 0.60" NOM. (15.2 mm) (15.2 mm) (15.2 mm)			
 See "Belt Selection Process" (page 5) See "Standard Belt Materials" (page 5) See "Special Application Belt Materials" (page 13) 	ge 5) ige 9) terials" (page 9	(8.7 mm) (8.7 mm) (4.3 mm) (4.3 mm) (6.1 mm) (6.1 mm)				

intralox

Belt Data											
Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	BS Belt Strength		Temperatu (contin	ire Range uous)	W	Belt Weight				
		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²				
Acetal	Nylon	1000	1490	-50 to 200	-46 to 93	1.7	8.3				

	High Do	ensity I	nsert Roller
	in	mm	
Pitch	0.6	15.2	
Minimum Width	9	229	
Width Increments	3.00	76.2	
Open Area	44	%	
Hinge Style	Clo	sed	
Drive Method	Center/Hir	nge-driven	
Product I	Notes		
 Contact Intralox for precise b stock status before designing a belt. Uses single headless rod across each row of belt. Yellow acetal rollers are 0.30 in in (12.1 mm) diameter, and are Rollers protrude above and bell Roller density is 320 rollers/ft^2 For low back pressure applicate between rollers in parallel. Weat wide is recommended to allow installation tolerance in the con adequate support to the belt. Material width is 0.75 in (19 mm). For activated roller applications under rollers. Compatible with 0.75 in (19.1 m tight transfers. For high-speed nose-roller is recommended. Sprocket locations are indented edge of belt. Sprocket locations are spaced 4 Roller indent from edge of belt (17.8 mm). Minimum back tension required Fully flush edges on one side a consection and an another side 	elt measuren g equipment of as the entire be a (7.6 mm) wid located on the ow the belt sur (3440 rollers/ ions, place we arstrip of 0.50 i some manufac veyor, while pl aximum allowe , place wearst and load applie d 1.5 in (38.1 m 3.0 in (76.2 mill to edge of rolle l. nd closed edg	hents and br ordering elt width on e and 0.48 e belt rod. rfaces. m^2). earstrip in (13 mm) cturing and roviding ed wearstrip trip directly hosebars for cations, a mm) from m) apart. er is 0.70 in	
Additional In	formatia	n	0.60" NOM. 0.60" NOM. 0.60" NOM. (15.2 mm) (15.2 mm) (15.2 mm)
See "Belt Selection Process" (p See "Standard Belt Materials" (See "Special Application Belt M See "Friction Factors" (page 13	age 5) page 9) <i>laterials</i> " (page)	(6.1 mm)	

Belt Data										
Belt Material	Standard Rod Material 0.25 x 0.17 in	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight			
	(6.4 x 4.3 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²			
Acetal	Nylon	1000	1490	-50 to 200	-46 to 93	1.87	9.13			

SECTION 2

	High Dens	ity Inser	t Roll	er 85	mm	
	in	mm				
Pitch	0.6	15.2				
Minimum Width	10	255	No. of Concession, Name			The pair of the
Width Increments	3.35	85	Contrast of the local division of the local	-	The Digit of the state	
Open Area	3.	6%			Son and	
Hinge Style	Clo	osed		0		
Drive Method	Center/Hi	nge-driven				
Produ	ct Notes					
 stock status before des a belt. Uses single headless rod each row of belt. Yellow acetal rollers are (in (12.1 mm) diameter, ar Rollers protrude above ar Roller density is 360 rolle For low back pressure ap between rollers in parallel wide is recommended to installation tolerance in th adequate support to the b width is 0.75 in (19 mm). For activated roller applic under rollers. Compatible with 0.75 in (1 tight transfers. For high-s nose-roller is recommended Sprocket locations are ind edge of belt. Sprocket locations are sp Roller indent from edge of (22.6 mm). Minimum back tension re- opposite side. See "Belt Selection Proces See "Standard Belt Maters" 	across the entire b 0.30 in (7.6 mm) wid id are located on th id below the belt su rs/ft^2 (3875 rollers, plications, place we 1. Wearstrip of 0.50 allow some manufa e conveyor, while p elt. Maximum allow ations, place wears 19.1 mm) diameter n peed and load applied. dented 1.67 in (42.5 aced 3.35 in (85 mm f belt to edge of roll quired. side and closed edge I Informatic pass" (page 5) rials" (page 9) Belt Materials" (page	or ordering elt width on de and 0.48 e belt rod. infaces. /m^2). earstrip in (13 mm) cturing and providing ed wearstrip trip directly nosebars for ications, a 5 mm) from m) apart. er is 0.89 in ges on		0.60" N (15.2 n	OM. 0.60" NOM. 0.60" NOM	
	<u> </u>		(4.3 MM	<i>''</i>		0.24" (6.1 mm)
		Belt Da	ta			
Belt Material	Standard Ø 0.18	Rod Material in (4.6 mm)	BS	Belt Strength	Temperature Range (continuous)	Belt Weight

lb/ft

1000

Nylon

°F

-50 to 200

kg/m

1490

°C

-46 to 93

lb/ft²

1.95

kg/m²

9.52

Acetal

	Flat Fi	riction	Top 85 mm
	in	mm	· · · · · · · · · · · · · · · · · · ·
Pitch	0.60	15.2	
Minimum Width	3.35	85.0	
Maximum Width	66.9	1700	
Width Increments	3.35	85	
Opening Sizes (approx.)	-	-	
Open Area	00	%	and the second second
Hinge Style	Clos	sed	
Product	Notes		
 Contact Intratox for precise stock status before designin a belt. Uses headless rods. Smooth, closed upper surface Underside design combined w belt to run smoothly around a (dynamic nose-roller is highly ru handling applications. Small pitch reduces chordal ac transfer dead plate. Minimal back tension required engagement. Closed edges used on one side Sprockets have lug tooth, whic performance and enhances sp 	with fully flush with fully flush ith small pitch a 0.75 in (19 mm) ecommended for ction, reducing to to maintain spr le of the belt. ch improves driv procket life.	edges. allow the nosebar. A or package the gap at rocket	
Additional In	formatio	n	0.085" 0.60" NOM 0.60" NOM 0.60" NOM 0.26"
 See "Belt Selection Process" (See "Standard Belt Materials" See "Special Application Belt I See "Friction Factors" (page 1) 	page 5) (page 9) <i>Material</i> s" (page 3)	e 9)	(2.2 mm) (15.2 mm) (15.2 mm) (6.6 mm) (15.2 mm) (15.2 mm) (6.6 mm) (15.2 mm) (15.2 mm) (6.7 m

Belt Data

Base Belt Material	Base/Friction Color	Standard Rod Material Ø 0 18 in (4.6 mm)	BS	Belt Strength	Temperature Range (continuous)		Belt Friction Top Weight Hardness		Agency Acceptability		
	0.18 in (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²		FDA (USA)	${\sf EU}\;{\sf MC}^{\sf b}$	
Acetal	Grey/Black	Nylon	1500	2230	-10 to 130	-23 to 54	1.80	8.79	54 Shore A	•	

Fully compliant

a - FDA Compliant with Restriction: Do not use in direct contact with fatty foods.

b - European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.

c - This elastomer is not subject to the testing of this directive.

	N	lold to V	Vidth Flat	Top w	ith Tab	S		
		in	mm		States			
Pitch		0.60	15.2	and the first set		666	_	
		3.25	83			0.0.0.0.0.0.0.0.0.0	10000	11111
Molded Widths	6	3.35	85					Springer .
	—	4.50	114					Actual
Opening Sizes	approx.)	-	-					Sector
Open Area		09	%	h-				
Hinge Style		Clo	sed	S. Stann	and the	and the second		
Drive Method		Center/Hir	nge-driven					
	Product Not	es					—	
status befor Series 1000 increments. Smooth, clos Uses headed Can be used transfers. Minimal back Lug tooth sprinstallation ea 3.25 in (83 m 4.50 in (114 m three sprocket Width tolerar in (+0.00/-0.5 Tracking tabs 3.35 in (85 m (42.1 mm) we 3.25 in (83 m into standard proper belt a	e designing equipment MTW Flat Top belts are b ded upper surface with full d rods. over 0.75 in (19.1 mm) di tetension required. rockets improve sprocket asier. m) tabbed belts use one mm) and 3.35 in (85 mm) ets. toces for Series 1000 MTW 50 mm). s provide lateral tracking. m) molded tracking tabs fi earstrip tracks ensuring put m) and 4.50 in (114 mm) l 1-3/4 in (44.5 mm) wears lignment.	or ordering oxed in 10 ff y flush edge ameter nose engagemen sprocket. tabbed belts / belts are ++ t into standa roper belt ali molded trac strip tracks e	a belt. (3.05 m) s. abars for tight t and make s use up to 0.000/-0.020 ard 1-21/32 in gnment. king tabs fit onsuring					
	Additional Infor	nation			• 0.60 in NOM _ (15.2 mm)	0.60 in NOM 0.60 in (15.2 mm) 0.60 in (15.2 mm)	NOM	
 See "Belt Se See "Standa. See "Special See "Friction 	lection Process" (page 5) rd Belt Materials" (page 9) Application Belt Materials Factors" (page 13)	s" (page 9)		(4.3 mm)		0 0		0.64 in (16.2 mm) 34 in 7 mm)
			Belt Da	ta				
Belt Width	Belt Material	Standar	rd Rod Material	BS	Belt	Temperature Range	W	Belt

intralox.

	Beit Data										
Belt \	3elt Width Belt Material		Standard Rod Material Ø 0.18 in	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight		
inch	(mm)		(4.6 mm)	lb	kg	°F	°C	lb/ft	kg/m		
3.25	83	Acetal	Nylon	406	600	-50 to 200	-46 to 93	0.44	0.65		
3.35	85	Acetal	Nylon	419	620	-50 to 200	-46 to 93	0.44	0.65		
4.50	114	Acetal	Nylon	563	840	-50 to 200	-46 to 93	0.60	0.89		

	FI	at Top	85 mm
	in	mm	
Pitch	0.6	15.2	and the second s
Minimum Width	10	255	
Maximum Width	67	1700	
Width Increments	3.35	85	
Opening Sizes (approx.)	-	-	and the second sec
Open Area	00	%	a strange and
Hinge Style	Clo	sed	
Drive Method	Center/Hir		
Product N	lotes		nnnynnn
 Contact Intralox for precise be stock status before designing a belt. Uses headless rods. Smooth, closed upper surface w Underside design combined with belt to run smoothly around a 0.7 dynamic nose-roller is highly rec handling applications. Small pitch reduces chordal acti transfer dead plate. Minimal back tension required to engagement. Closed edges used on one side Sprockets have lug tooth, which performance and enhances sproces 	elt measuren equipment of rith fully flush a small pitch a 75 in (19 mm) commended fo on, reducing o maintain spi of the belt. improves driv ocket life.		
Additional Inf	ormatio	n	0.60" NOM. 0.60" NOM. 0.60" NOM.
 See "Belt Selection Process" (pa See "Standard Belt Materials" (pa See "Special Application Belt Ma See "Friction Factors" (page 13) 	age 5) age 9) a <i>terial</i> s" (page	(15.2 mm) (15.2 mm) 0.17" (4.3 mm) (4.3 mm) (4.3 mm) (4.3 mm) (4.6 mm)	
		Belt D	ata

Don Data											
Belt Material	Standard Rod Material Ø 0.18 in	BS	Belt Strength	Belt Temperat Strength (contin		W	Belt Weight				
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²				
Acetal	Polypropylene	1500	2230	34 to 200	1 to 93	1.55	7.57				

Flat Top ONEPIECE™ Live Transfer 6.3 in											
	in	mm									
Pitch	.60	15.2	-								
Molded Width	6.3	160	600.0.0.0.0.0.0								
Width Increments	-	-									
	00))/_									
	Clas	/0 									
		sea									
Drive Method	Center/Hir	nge-driven									
Product N	otes		mmmmm								
Contact Intralox for precise be stock status before designing	It measuren	nents and									
a belt.	equipment o										
 Series 1000 MTW Flat Top belts 	are boxed in										
m) increments.											
 Smooth, closed upper surface w 	ith fully flush										
Transfer edge is an integral part	of this belt										
• Cannot be used over 0.75 in (19	.1 mm) diame										
nosebars for tight transfers.	,										
Minimal back tension required.											
 Lug-tooth sprockets improve spr make installation easier 	ocket engage	ement and									
Belt uses three sprockets.											
 For information regarding sprock 	et placement	t, refer to									
the Center Sprocket Offset chart	on page 408	8.									
 Designed for smooth, self-clearing onto take owner balts. 	ng, right-angle	e transfers									
 Molded tracking tabs fit into stan 	dard 1.75 in	(44.5 mm)									
wearstrip tracks to ensure prope	r belt alignme	ent.									
 You may need to include a fixed 	frame suppo	ort member									
beneath the ONEPIECE™ Live	Fransfer belt	prior to the	0.34 in 4.70 in (119.4 mm) 0.70 in								
Transfer belt does not snag whe	t the UNEPIE	CE'™ LIVE with the									
takeaway belt. See "Fig. 3–31 P/	ARABOLIC G										
CONTOURS WITH 6.0 in. (152 r	nm) ONEPIE	CE™ LIVE	(7.4 mm)								
TRANSFER BELT" (page 440).											
 Use sprockets with a pitch diame or larger 	eter of 1.50 in	3.84 in 1.715 in (97.5 mm)									
Additional Inf	ormatio	n	(43.6 mm)								
			-								
 See "Belt Selection Process" (pa See "Standard Bolt Motorials" (pa 	ge 5)										
• See "Special Application Belt Ma	age 9) aterials" (page	e 9)									
• See "Friction Factors" (page 13)		- /									
		D-14 D	- 4 -								

intralox

Belt Data										
Belt Material	Standard Rod Material 0.18 in	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight			
(4.6 mm)		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²			
Acetal	Nylon	500	744	-50 to 200	-46 to 93	0.78	3.81			

		Flat Frict	ion Top
	in	mm	CALLER FREERE
Pitch	0.60	15.2	
Minimum Width	3	76	and the second of the particular
Width Increments	0.5	12.7	
Opening Sizes (approx.)	-	-	
Open Area	0	%	
Hinge Style	Clo	sed	
Drive Method	Center/Hi	nge-Driven	
Product	Notes		
 Smooth, closed upper surface wi Uses headless rods. Underside design and small pitch around nosebars. Can be used over 0.75 in (19.1 m transfers. Available in grey acetal with blac Friction top extends to the edge of Mini-pitch reduces chordal action Closed edges on one side of the Lug tooth sprockets improve spro- installation easier. Additional In See "Belt Selection Process" (pa See "Special Application Belt Materials" (page 13)	th fully flush ec a allow the belt f m) diameter no k rubber. of the belt (no in a and transfer d belt. ocket engagem formation ge 5) age 9) <i>terials</i> " (page 9	lges. to run smoothly usebars for tight ndent). ead plate gap. ent and make	0.85" 0.60" NOM. 0.60" NOM. 0.26" (2.2 mm) (15.2 mm) (15.2 mm) (5.6 mm) (2.2 mm) (15.2 mm) (15.2 mm) (5.7 mm) (0.34" (8.7 mm) (15.7 mm) (15.2 mm)

				Belt I	Data						
Base Belt Material	Base/Friction Color	Standard Rod Material	BS	Belt Strength	Temperate (contin	ure Range nuous)	W	Belt Weight	Friction Top Hardness	Agency Acc	eptability
		Ø 0.18 in (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²		FDA (USA)	EU MC ^b
Acetal	Grey/Black	Nylon	1500	2232	-10 to 130	-23 to 54	1.80	8.79	54 Shore A	•	
Acetal	White/White	Nylon	1500	2232	-10 to 130	-23 to 54	1.80	8.79	54 Shore A	•	

Fully compliant

a - FDA Compliant with Restriction: Do not use in direct contact with fatty foods.

b - European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.

c - This elastomer is not subject to the testing of this directive.

149

	in	mm
Pitch	0.6	15.2
	1.1	29
Moldod Widths	1.5	37
	1.8	46
	2.2	55
Opening Size (approximate)	-	-
Open Area	09	%
Hinge Style	Clos	sed
Drive Method	Center/Hir	nge-driven

Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Series 1000 MTW Flat Top belts are boxed in 10 ft (3.05 m) increments.
- Smooth, closed upper surface with fully flush edges.
- Uses headless rods.
- Underside design and small pitch allow the belt to run smoothly around nosebars.
- Can be used over 0.75 in (19.1 mm) diameter nosebars for tight transfers.
- Minimal back tension required.
- Lug tooth sprockets improve sprocket engagement and make installation easier.
- 29 mm and 37 mm belts use one sprocket.
- 46 mm and 55 mm belts can use up to two sprockets.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

			Belt Dat	ta					
Belt \	Nidth	Belt Material	Standard Rod Material Ø 0.18 in	BS	Belt Strength	Temperatu (contin	ire Range uous)	W	Belt Weight
inch	(mm)		(4.6 mm)	lb	kg	°F	°C	lb/ft	kg/m
1.1	29	Acetal	Nylon	140	64	-50 to 200	-46 to 93	0.15	0.22
1.5	37	Acetal	Nylon	200	91	-50 to 200	-46 to 93	0.19	0.28
1.8	46	Acetal	Nylon	230	104	-50 to 200	-46 to 93	0.23	0.35
2.2	55	Acetal	Nylon	200 ^a	91 ^a	-50 to 200	-46 to 93	0.28	0.42

a. 270 lb (122 kg) for 2.2 in (55 mm) with two (2) sprockets

1000

intralo

	No	n Skid R	aised Rib
	in	mm	2
Pitch	0.60	15.2	- many
MInimum Width	3.0	76.0	11111
Width Increments	0.5	12.7	111
Opening Sizes (approx.)	-	-	
Open Area	C	%	and the second sec
Hinge Style	Clo	sed	
Drive Method	Center/Hi	nge-Driven	
Product	Notes		C. C
 stock status before designi a belt. Mini-pitch reduces chordal ac gap. Minimal back tension required Closed edges on one side of Lug tooth sprockets improve make installation easier. Finger transfer plates ensure the need for safety stops and Low profile conveyor reduces associated with digging pits. Non Skid Raised Rib surface Two edge options available: r 	ng equipment tion and trans d. the belt. sprocket enga safe transfers reducing dow s the installati increases trans no indent and	t or ordering fer dead plate agement and a, eliminating rotime. on costs ction. 21 mm indent.	
Additional II • See "Belt Selection Process" • See "Standard Belt Materials • See "Special Application Belt • See "Friction Factors" (page	(page 5) " (page 9) " <i>Materials</i> " (pa 13)	on age 9)	0.086 in (2.2 mm) (2.2 mm) (2.2 mm) (15.2 mm)

	Belt Da	ta					
Belt Material	Standard Rod Material Ø 0.18 in	BS	Belt Strength	Temperatu (contir	ure Range ∩uous)	W	Belt Weight
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m ²
Acetal	Nylon	2000	2976	-50 to 200	-46 to 93	1.86	9.08
HSEC Acetal	Nylon	1800	2679	-50 to 200	-46 to 93	1.88	9.18
FR Anti Static	Nylon	700	1042	-50 to 150	-46 to 66	1.64	8.01

SECTION 2

		Sprocket a	and Support Quantity Refere	ence
Belt Wic	Ith Range ^a	Minimum Number of	V	Vearstrips
in	mm	Sprockets Per Shaft ^b	Carryway	Returnway ^c
3	76	2	2	2
4	102	2	2	2
6	152	2	2	2
7	178	2	3	2
8	203	2	3	2
10	254	2	3	2
12	305	3	3	2
14	356	3	4	3
15	381	3	4	3
18	457	3	4	3
24	610	5	5	3
30	762	5	6	4
36	914	7	7	4
42	1067	7	8	5
48	1219	9	9	5
54	1372	9	10	6
60	1524	11	11	6
72	1829	13	13	7
84	2134	15	15	8
96	2438	17	17	9
120	3048	21	21	11
144	3658	25	25	13
For Other N	Widths, Use Oo laximum 6 in. (1	dd Number of Sprockets ^d at 52 mm)	Maximum 6 in. (152 mm) & Spacing	Maximum 12 in. (305 mm) & Spacing

a. Belts are available in 0.5 in (12.7 mm) increments beginning with 3 in (76 mm). If the actual width is critical, consult Customer Service.

These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications. Caution when using Friction Top. **Contact Intralox Customer Service for friction top applications.** The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. b.

c. d.

153

							Molde	d Spro	cket ^a	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	ŀ	Available E	Bore Size	S
Teeth (Chordal	Pitch Dia in	Pitch Dia	Outer Dia in	Outer Dia	Hub Width	Hub Width	U.S.	Sizes	Metric	c Sizes
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in ^b	Square in	Round mm ^b	Square mm
16	3.1 ^c	79 ^c	3.2	81	0.5	13		1.5		40
(1.92%)					1.0	25	1.0			
24 (0.86%)	4.6	117	4.8	121	1.0	25		1.5 2.5	30	40 60
32 (0.48%)	6.1	155	6.5	164	1.0	25		1.5		40

a. Contact Customer Service for lead times.b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

When using 3.1 in (79 mm) pitch diameter sprocket, the Belt Strength for belts rated over 1200 lb/ft (1786 kg/m) will be de-rated to 1200 lb/ft (1786 kg/m) and c. all other belts will maintain their published rating.

						A	cetal S	iplit Sp	orocke	eta	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.		Available E	Bore Size	s	
Teeth (Chordal	Pitch Dia in	Pitch Dia	Outer Dia in	Outer Dia	Hub Width	Hub Width	U.S.	Sizes	Metrie	c Sizes	
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in ^b	Square in	Round mm ^b	Square mm	e cou
24 (0.86%)	4.6	117	4.8	121	1.5	38	1.25				
32 (0.48%)	6.1	155	6.5	164	1.5	38			30 40		
											and and

a. Contact Customer Service for lead times.

b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

						H	IR Nylo	on Spro	ocket ^{ab})	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.		Available I	Bore Sizes	S	
Teeth (Chordal	Pitch Dia in	Pitch Dia	Outer Dia in	Outer	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes	, MA A
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in	Square in	Round mm	Square mm	
16 (1.92%)	3.1	79	3.2	81	1.0	25	1.9 ^c				

a. Contact Customer Service for lead times.
b. Cannot be used with S1000 High Density Insert Roller
c. 1/4" keyway

Glass-Filled Nylon Split Sprocket^a

No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.		Available I	Bore Size	s
Teeth (Chordal	Pitch Dia in	Pitch	Outer Dia in	Outer	Hub Width	Hub Width	U.S.	Sizes	Metric	: Sizes
Action)		mm	Dia III	mm	in	mm	Round in	Square in	Round mm	Square mm
24 (0.86%)	4.6	117	4.8	121	1.5	38	1 1.25 1.5	1.5		40
32 (0.48%)	6.1	155	6.5	164	1.5	38	1 1.25 1.5	1.5	30 40	40

a. Contact Customer Service for lead times.

No. of Teeth Nom. Nom. Nom. Nom. Nom. Nom. Available Bore Sizes Metric Sizes Metric Sizes Metric Sizes Metric Sizes Metric Sizes
Teeth Pitch Pitch Outer Outer Hub Hub U.S. Sizes Metric Sizes
(Chordal Dia in Dia, Dia in Dia, Width Width Cite Cite Cites Middle Cites
Action) mm mm in mm Round Square Round Square mm mm
24 4.6 117 4.8 121 1.5 38 1.5 40 (0.86%)
32 (0.48%) 6.1 155 6.5 164 1.5 38 1.5 40

a. Contact Customer Service for lead times.

SECTION 2

1000

intralo

Pitch Diameter

mm

79

117

155

79

117

155

79

117

155

32

2.88

73

in

3.1

4.6

6.1

3.1

4.6

6.1

3.1

4.6

6.1

SERIES 1000

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

Sprocket Description Α в С Е Range (Bottom to Top) No. Teeth mm in in in mm mm in mm SERIES 1000 FLAT TOP, MOLD-TO-WIDTH FLAT TOP, FLAT TOP 85 MM 1.34-1.37 16 34-35 1.59 40 3.08 78 1.77 45 24 2.11-2.13 54 1.99 50 4.60 117 2.53 64 32 2.88-2.89 73 2.43 62 6.12 155 3.29 84 SERIES 1000 INSERT ROLLER, HIGH DENSITY INSERT ROLLER 16 1.33 34 1.60 41 3.13 80 1.84 47 24 2.10 53 2.02 51 4.65 118 2.60 66 32 73 2.87 2.46 62 6.18 157 3.36 85 SERIES 1000 FLAT FRICTION TOP, FLAT FRICTION TOP 85 MM 16 1.35 34 1.59 40 3.17 81 1.86 47 24 2.12 54 2.01 51 4.70 119 2.62 67

2.44

62

6.22

155

3.39

86

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Description	Gap			
Pitch Diameter		No. Tooth	in	mm	
in	mm	No. reem			
3.1	79	16	0.029	0.7	
4.6	117	24	0.020	0.5	
6.1	155	32	0.015	0.4	

		Flush	Grid
	in	mm	the subscription is a first of the first of
Pitch	0.60	15.2	an and a start of the start of
Minimum Width	See Dred	uat Nataa	and a start of
Width Increments	See Product Notes		
Min. Opening Size (approx.)	0.17 × 0.10	4.3 × 2.5	
Max. Opening Size (approx.)	0.31 × 0.10	7.9 × 2.5	
Open Area	28	%	
Hinge Style	Open		The second second
Drive Method	Hinge-driven		1

Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Lightweight with smooth surface grid.
- Uses headless rods.
- Mini-pitch reduces chordal action and transfer dead plate gap.
- Custom-built in widths that vary by material. Acetal and polypropylene are built in widths from 3 in (76 mm) and up, in 0.5 in (12.7 mm) increments. FR-TPES is built in widths from 5 in (127 mm) and up, in 1.0 in (25.4 mm) increments. All other materials are built in widths 3 in (76 mm) and up, in 1.0 in (25.4 mm) increments.
- Can be used over 0.875 in (22.2 mm) diameter nosebar for tight transfers.
- For information regarding sprocket placement, refer to the Center Sprocket Offset chart on page 410.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

	Belt	Data						
Belt Material	Standard Rod Material Ø 0.18 in	BS	BS Belt Strength		Temperature Range (continuous)		Belt Weight	
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²	
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.81	3,95	
Polyethylene	Polyethylene	450	670	-50 to 150	-46 to 66	0.87	4.25	
Acetal	Polypropylene	1300	1940	34 to 200	1 to 93	1.19	5.80	
HSEC Acetal	Polypropylene	800	1190	34 to 200	1 to 93	1.19	5.80	
FR-TPES	Polypropylene	750	1120	40 to 150	4 to 66	1.30	6.34	
HHR Nylon	HHR Nylon	1100	1640	-50 to 310	-46 to 154	1.14	5.57	
HR Nylon ^a	Nylon	1100	1640	-50 to 240	-46 to 116	1.07	5.22	
UV Resistant Polypropylene	UV Resistant Polypropylene	700	1040	34 to 220	1 to 104	0.81	3.98	
Detectable Polypropylene A22	Polypropylene	450	670	34 to 150	1 to 66	1.04	5.08	
Acetal ^b	Polyethylene	1200	1790	-50 to 70	-46 to 21	1.19	5.80	
UVFR	UVFR	700	1042	-34 to 200	1 to 93	1.57	7.67	

a. This product may not be used for food contact articles that will come in contact with food containing alcohol.

b. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

		Flat '	Тор
	in	mm	and
Pitch	0.60	15.2	
Minimum Width	3	76	
Width Increments	1.00	25.4	
Opening Size (approximate)	-	-	
Open Area	00	%	
Hinge Style	Op	en	
Drive Method	Hinge-	driven	
Product	Notes		- nn p n n n n n n
 Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt. Lightweight with smooth, closed surface grid. Uses headless rods. Mini-pitch reduces chordal action and transfer dead plate gap. Can be used over 0.875 in (22.2 mm) diameter nosebar for tight transfers. For information regarding sprocket placement, refer to the Center Sprocket Offset chart on page 410 			unnnnnnn unnnnnnn unnnnnn
Additional I	nformatio	on	0.60" NOM. 0.60" NOM. 0.60" NOM. (15.2 mm) (15.2 mm) (15.2 mm)
 See "Belt Selection Process" (page 5) See "Standard Belt Materials" (page 9) See "Special Application Belt Materials" (page 9) See "Friction Factors" (page 13) 		0.157" (4.0 mm) 1 0 0 0 0 0.344" (8.7 mm)	

Belt Data							
Belt Material	Standard Rod Material Ø 0.18 in	BS Belt Strength		Temperati (contir	ure Range huous)	W	Belt Weight
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene	Polypropylene	500 ^a	744 ^a	34 to 220	1 to 104	0.90	4.40
Polyethylene	Polyethylene	300 ^a	450 ^a	-50 to 150	-46 to 66	0.96	4.69
HR Nylon	Nylon	500	744	-50 to 240	-46 to 116	1.15	5.61
Acetal	Polypropylene	1000	1490	34 to 200	1 to 93	1.30	6.35
Acetal ^b	Polyethylene	900	1340	-50 to 70	-46 to 21	1.30	6.35
X-Ray Detectable Acetal	X-Ray Detectable Acetal	800	1191	-50 to 200	-46 to 93	1.6	7.81
Detectable Polypropylene A22	Polypropylene	300	446	34 to 150	1 to 66	1.09	5.32

a. When using steel split sprockets, the belt strength for polypropylene is 400 lb/ft (595 kg/m): polyethylene is 240 lb/ft (360 kg/m)
b. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

	Perforated Flat Top						
	in	mm	The second				
Pitch	0.60	15.2					
Minimum Width	3	76					
Width Increments	1.00	25.4					
Opening Size (approximate)	-	-					
Open Area	See Prod	uct Notes					
Hinge Style	Ор	en					
Drive Method	Hinge	driven					
Product	Notes						
 Uses headless rods. For use on vacuum application end transfers. Underside design and small present smoothly around nosebars. Available with 5/32 in (4 mm) nominal 1 in (25.4 mm) × 0.6 pattern. 5.3% open area includes 2.14 Can be used over 0.875 in (2 for tight transfers. For information regarding spread the center Sprocket Offset characteristic sectors). 	ons requiring ti bitch allow the round perfora in (15.2 mm) p % open area a 2.2 mm) diam- ocket placement nart on page 4	ght, end-to- belt to run tions on a perforation t the hinge. eter nosebar ent, refer to 10.					
Additional II • See "Belt Selection Process" • See "Standard Belt Materials • See "Special Application Belt • See "Eriction Factors" (page	(page 5) " (page 9) <i>Materials</i> " (pa	on ge 9)	- 0.157" - 0.50" NOM 0.50" N				

Belt Data							
Belt Material	Standard Rod Material Ø 0.18 in	BS Belt Strength		Temperati (contir	W	Belt Weight	
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Acetal	Polypropylene	1000	1490	34 to 200	1 to 93	1.30	6.35
Acetal ^a	Polyethylene	900	1340	-50 to 70	-46 to 21	1.30	6.35

a. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

	Flush	n Grid F	riction Top
	in	mm	
Pitch	0.60	15.2	
Minimum Width	3	76	
Width Increments	0.5	12.7	
Opening Size (approximate)	0.17 × 0.10	4.3 × 2.5	
Open Area	28	28%	
Hinge Style	Ор		
Drive Method	Hinge-	driven	

Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Available in grey PP with grey rubber, blue PP with blue rubber, grey PP with black rubber, and white PP with white rubber.
- Uses headless rods.
- Can be used over 0.875 in (22.2 mm) diameter nosebar for tight transfers.
- For information regarding sprocket placement, refer to the Center Sprocket Offset chart on page 410.
- Belts have a 0.34 in (8.6 mm) molded indent.
- If a center-drive setup is used, it may be necessary to place collars to laterally retain the belt at the backbend roller before the drive. Abrasion resistant rods are recommended.
- Temperature, environmental conditions, and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

Belt Data											
Base Belt Material	Base/Friction Color	Standard Rod Material	BS	Belt Strength	Temperati (contir	ure Range nuous)	W	Belt Weight	Friction Top Hardness	Agency Acc	eptability
		Ø 0.18 in (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²		FDA (USA)	${\rm EU}~{\rm MC}^{\rm b}$
Polypropylene	Grey/Grey	Polypropylene	700	1040	34 to 150	1 to 66	1.18	5.76	64 Shore A		
Polypropylene	Grey/Black	Polypropylene	700	1040	34 to 150	1 to 66	1.18	5.76	55 Shore A	а	
Polypropylene	White/White	Polypropylene	700	1040	34 to 150	1 to 66	1.18	5.76	55 Shore A	а	С
Polypropylene	High Performance FT Blue/Blue	Polypropylene	700	1040	34 to 212	1 to 100	1.18	5.76	59 Shore A	а	С
Polypropylene	Blue/Blue	Polypropylene	700	1040	34 to 150	1 to 66	1.18	5.76		а	С

- Fully compliant

a - FDA Compliant with Restriction: Do not use in direct contact with fatty foods.

b - European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.

EU compliant with Restriction: Do not use in direct contact with fatty foods.

FI	ush Grid	Frictio	n Top,	No	Indent
	in	mm			
Pitch	0.60	15.2	and the second		
Minimum Width	3	76		C.C.C.	
Width Increments	0.5	12.7			ALL CARES
Opening Size (approximate)	0.17 × 0.10	4.3 × 2.5		1	-01
Open Area	28	28%			
Hinge Style	Ор	en		alala.	
Drive Method	Hinge-driven				1
Draduat	Mataa				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Available in blue PP with blue rubber.
- Uses headless rods.
- Can be used over 0.875 in (22.2 mm) diameter nosebar for tight transfers.
- For information regarding sprocket placement, refer to the Center Sprocket Offset chart on Page 1.
- If a center-drive setup is used, it may be necessary to place collars to laterally retain the belt at the backbend roller before the drive. Abrasion resistant rods are recommended.
- Temperature, environmental conditions, and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

uthenthente	
asy and and	
high the high the high the	
Uphytehytehyte	
Up the physical physi	
Upphylophylophyl	

Belt Data Temperature Range Base Belt Material Base/Friction Standard Rod Belt Belt Friction Top Agency Acceptability BS W Material Strenath (continuous) Weight Hardness Color Ø 0.18 in (4.6 mm) lb/ft lb/ft² FDA (USA) kg/m °F kg/m² °C EU MC^b Blue/Blue 700 1040 34 to 150 1 to 66 1.07 5.22 55 Shore A Polypropylene Polypropylene а с High 700 1040 34 to 212 1 to 100 1.18 5.76 59 Shore A Polypropylene Polypropylene а с Performance FT Blue/Blue

Fully compliant

a - FDA Compliant with Restriction: Do not use in direct contact with fatty foods.

b - European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.

c - EU compliant with Restriction: Do not use in direct contact with fatty foods.

SERIES 1100

ONEPIECE™ Live Transfer Flush Grid

	in	mm
Pitch	0.60	15.2
Minimum Width	6	152
Width Increments	1.00	25.4
Min. Opening Size (approx.)	0.17 × 0.10	4.3 × 2.5
Max. Opening Size (approx.)	0.31 × 0.10	7.9 × 2.5
Open Area	28	%
Hinge Style	Ор	en
Drive Method	Hinge-	driven

Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Lightweight with smooth surface grid.
- Mini-pitch reduces chordal action, resulting in a smoother product transfer.
- Uses headed rods.
- Transfer edge is an integral part of this belt.
- Designed for smooth, self-clearing, right angle transfers onto takeaway belts.
- Molded tracking tabs fit into standard 1-3/4 in (44.5 mm) wearstrip tracks ensuring proper belt alignment.
- Built with nylon rods for superior wear resistance.
- Recommended for use with EZ tracking sprockets.
- You may need to include a fixed frame support member beneath the <u>ONEPIECE</u>TM Live Transfer belt prior to the actual transfer. This ensures that the <u>ONEPIECE</u>TM Live Transfer belt does not snag when it intersects with the takeaway belt. See "Fig. 3–31 PARABOLIC GUIDE RAIL CONTOURS WITH 6.0 in. (152 mm) ONEPIECETM LIVE TRANSFER BELT" (page 442).
- Also available in 6 in (152 mm) Mold to Width.
- Use sprockets with a pitch diameter of 3.5 in (89 mm) or larger.
- For custom belt widths, contact Customer Service.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

	HERIFFORE
	and the second s
	SI CONTE
	DIC. EST
	UZALZAZAZAZAZA
	The second stands and the second s
	יייייניסדטרמדטרמדטראסדט
	THE PROPERTY AND THE PROPERTY AND THE
	1705770770770770
r.	0.34" 4.45" (8.7 mm) (113.0 mm) 0.70"
	3.58" 1-21/32" (90.9 mm)

Belt Data Standard Rod Material **Belt Material** Belt **Temperature Range** Belt :43 Ø 0.18 in Strength (continuous) Weight (4.6 mm)lb/ft kg/m °F °C lb/ft² kg/m² 1940 34 to 200 Acetal Nylon 1300 1 to 93 1.19 5.80 FR-TPES Nylon 750 1120 40 to 150 4 to 66 1.30 6.34 HHR Nylon HHR Nylon 1100 1640 -50 to 310 -46 to 154 1.20 5.80

(42.1 mm)

SERIES 1100 Flush Grid Nub Top[™] in mm Pitch 0.60 15.2 Minimum Width 3 76 Width Increments 1.00 25.4 Opening Size (approx.) 0.18×0.09 4.4×2.3 Open Area 15% Product Contact Area 26% Hinge Style Open Drive Method Hinge-driven **Product Notes** Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt. • Standard Nub indent is 1.0 inch (25.4 mm). Uses headless rods. • Nub pattern reduces contact between belt surface and product. Manufactured in acetal, polypropylene, and polyethylene (for frozen products). • Recommended for products large enough to span the distance between the nubs. Flush Grid Nub Top flights are available. 0.175" 0.05" Additional Information (4.4 mm) (1.3 mm) 0.2' • See "Belt Selection Process" (page 5) 0.394" (5.1 mm) • See "Standard Belt Materials" (page 9) (10.0 mm) • See "Special Application Belt Materials" (page 9) 0.60" NOM. 0.60" NOM. 0.60" NOM. See "Friction Factors" (page 13) (15.2 mm) (15.2 mm) (15.2 mm)

Belt Data									
Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	BS Belt Strength ^a		Temperature Range (continuous)		W	Belt Weight		
		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²		
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.93	4.55		
Acetal	Polypropylene	1300	1940	34 to 220	7 to 93	1.36	6.65		
Polyethylene	Polyethylene	450	670	-50 to 150	-46 to 66	1.00	4.90		
Acetal	Polyethylene	1200	1790	-50 to 70	-46 to 21	1.36	6.65		

When using polyurethane sprockets, the Belt Strength for polypropylene, acetal, and nylon is750 lbs/ft (1120 kg/m), and the temperature range for the sprocket a. is 0 °F (-18 °C) to 120 °F (49 °C). Contact Customer Service for availability of polyurethane sprockets.

Г

Embedded Diamond Top	En	
in mm	in	
n 0.60 15.2	0.60	Pitch
mum Width 3 76	3	Vinimum Width
h Increments 1.00 25.4	1.00	Width Increments
ning Size (approx.)	(.) -	Opening Size (approx.)
n Area 0%		Open Area
e Style Open		Hinge Style
e Method Hinge-driven	Hi	Drive Method
Product Notes	duct Notes	Product
htweight with smooth, closed surface grid. es headless rods. ni-pitch reduces chordal action and transfer dead plate o. n be used over 0.875 in (22.2 mm) diameter nosebar tight transfers. r information regarding sprocket placement, refer to c Center Sprocket Offset chart on page 410.	both, closed surfac hordal action and tr 875 in (22.2 mm) c arding sprocket plac Offset chart on pa	 Lightweight with smooth, clo Uses headless rods. Mini-pitch reduces chordal a gap. Can be used over 0.875 in (for tight transfers. For information regarding sp the Center Sprocket Offset of the center
Additional Information	nal Inform	Additional l
 "Belt Selection Process" (page 5) "Standard Belt Materials" (page 9) "Special Application Belt Materials" (page 9) "Friction Factors" (page 13) 	Process" (page 5) Materials" (page 9) ation Belt Materials s" (page 13)	 See "Belt Selection Process See "Standard Belt Material See "Special Application Be See "Friction Factors" (page
Belt Data		

intralox

Beit Data										
Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	BS Belt Strength ^a		Temperature Range (continuous)		W	Belt Weight			
		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²			
Polyethylene	Polyethylene	300	450	-50 to 150	-46 to 66	0.96	4.69			

a. When using steel sprockets, the belt strength for polyethylene is 240 lb/ft (360 kg/m).

Cone Top™							
	in	mm					
Pitch	0.60	15.2	all				
Minimum Width	9	229	a conce				
Width Increments	1.00	25.4					
Opening Size (approx.)	-	-					
Open Area	09	%					
Hinge Style	Ор	en					
Drive Method	Hinge-	driven	the hard a second and a second a				
Product	Notes						
 Contact Intralox for precise stock status before designin a belt. Uses headless rods. Mini-pitch reduces chordal act gap. Can be used over 0.875 in (2 for tight transfers. For information regarding spruthe Center Sprocket Offset che Minimum nominal alternating mm) and 3 in (76 mm). 	tion and transfe 2.2 mm) diame ocket placeme art on page 4 edge indents o						
Additional Ir	nformatio	on					
 See "Belt Selection Process" See "Standard Belt Materials See "Special Application Belt See "Friction Factors" (page 2) 	(page 5) " (page 9) <i>Material</i> s" (pa 13)	ge 9)	0.125" (3.2 mm) (7.2 mm) (15.2 mm) (15.2 mm) (15.2 mm) (15.2 mm) (15.2 mm) (15.2 mm) (15.2 mm)				

Belt Data								
Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight	
		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²	
Acetal	Polypropylene	1000	1490	34 to 200	1 to 93	1.31	6.40	
HR Nylon	Nylon	500	744	-50 to 240	-46 to 116	1.18	5.76	

			•
	in	mm	
Pitch	0.60	15.2	
Molded Widths	1.5 & 1.8	38 & 46	
Min. Opening Size (approx.)	0.17 × 0.10	4.3 × 2.5	
Max. Opening Size (approx.)	0.31 × 0.10	7.9 × 2.5	
Open Area	26		
Hinge Style	Ор	en	
Drive Method	Hinge-	driven	- Freedow
Product	Notes		
 stock status before designina belt. Boxed in 10 ft (3.05 m) increments Flush edges with snap-in rod Uses headed rods. Tracking tabs provide lateral fe All chains come with nylon roolonger service life. Lightweight with smooth surfate Can be used over 0.875 in (2 nosebar for tight transfers. One (1) sprocket maximum p EZ Track™ sprockets only. The 38 mm belt has a 1.2 in (tabs. The 46 mm belt has a 1 	ng equipment nents. retention. tracking. dlets standard ace grid. 2.2 mm) diame er shaft for bot 30.6 mm) spac .54 in (39.1 mi	or ordering , providing eter h widths. cing between m) spacing.	
Additional In	ntormatio	(15.2 mm) (15.2 mm) (15.2 mm) (15.2 mm)	
 See "Belt Selection Process" See "Standard Belt Materials" See "Special Application Belt See "Friction Factors" (page 2) 	(page 5) "(page 9) " <i>Materials"</i> (pa 13)	ge 9)	0.50° (3.8 mm) 0.344° (8.7 mm)

• See "Friction Factors" (page 13)

Belt Data									
Belt Material	Standard Rod Material Ø 0.18 in	BS Belt Strength ^a		Temperature Range (continuous)		W	Belt Weight		
(4.6 mm)		lb	kg	°F	°C	lb/ft	kg/m		
Acetal (38 mm)	Nylon	130	59	-50 to 200	-46 to 93	0.185	0.275		
Acetal (46 mm)	Nylon	150	68	-50 to 200	-46 to 93	0.216	0.321		

a. When using steel sprockets, the belt strength for polyethylene is 240 lb/ft (360 kg/m).
1	6	7

		Sprocket a	nd Support Quantity Refere	nce ^a
Belt Wic	lth Range ^b	Minimum Number of	Ŵ	/earstrips
in.	mm	Sprockets Per Shaft ^c	Carryway	Returnway ^d
3	76	1	2	2
4	102	1	2	2
6	152	2	2	2
7	178	2	3	2
8	203	2	3	2
10	254	3	3	2
12	305	3	3	2
14	356	5	4	3
15	381	5	4	3
16	406	5	4	3
18	457	5	4	3
20	508	5	5	3
24	610	7	5	3
30	762	9	6	4
32	813	9	7	4
36	914	9	7	4
42	1067	11	8	5
48	1219	13	9	5
54	1372	15	10	6
60	1524	15	11	6
72	1829	19	13	7
84	2134	21	15	8
96	2438	25	17	9
120	3048	31	21	11
144	3658	37	25	13
For Other M	Widths, Use Oc laximum 4 in. (1	dd Number of Sprockets ^e at 02 mm)	Maximum 6 in. (152 mm) & Spacing	Maximum 12 in. (305 mm) & Spacing

a. Because of the single plate steel design, Intralox recommends using twice as many 8 and 12 tooth sprockets as indicated.

b. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 1.00 in. (25.4 mm) increments beginning with minimum width of 3 in. (76 mm). If the actual width is critical, consult Customer Service.

c. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.

d. Caution when using Friction Top. Contact Intralox Customer Service for friction top applications.

e. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 410 for lock down location.

intralox

							Molde	ed Spro	ocket ^a	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	ŀ	Available E	Bore Size	s
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.	Sizes	Metric	c Sizes
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in ^b	Square in	Round mm ^b	Square mm
12 (3.41%)	2.3	58	2.3	58	0.75	19	1.0	1.0	25	25
16 (1.92%)	3.1	79	3.1	79	1.0	25	1 to 1-1/4	1.5	25 to 30	40
18	3.5	89	3.5	89	0.75	19		1.0		25
(1.52%)								1.5		40
20 (1.23%)	3.8	97	3.8	97	1.0	25		1.5		40
24	4.6	117	4.7	119	1.0	25	1 to	1.5	25 to	40
(0.86%)							1-1/4	2.5	30	60
26 (0.73%)	5.1	130	5.1	130	1.0	25	1 to 1-1/4	1.5	25 to 30	40
32	6.1	155	6.2	157	1.0	25	1 to	1.5	25 to	40
(0.48%)							1-1/4	2.5	30	60
								2.5		00

a. Contact Customer Service for lead times.
b. Round bore molded and split perceivate

b. Round bore moled and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have set screws for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket needs to be locked down. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

	Abrasion Resistant Metal Sprocket ^a													
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	Available E	Bore Size	S				
Teeth (Chordal	Pitch Dia in	Pitch	Outer Dia in	Outer	Hub Width	Hub Width	U.S.	Sizes	Metric	: Sizes	MAR			
Action)	Dia. In	mm	Dia. III	mm	in	mm	Round in ^b	Square in	Round mm ^b	Square mm				
8 (7.61%)	1.6	41	1.6	41	0.164	4.2	3/4	5/8	20		37 3			
12 (3.41%)	2.3	58	2.3	58	0.164	4.2	1.0	1.0	25	25	3 Arth			

a. Contact Customer Service for lead times.

b. The stainless steel sprockets have a male key in the round bore sizes. Since the key is part of the sprocket, only the center sprockets should be locked down to track the belt. The male key requires that the shaft keyway run the entire length of the shaft. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885

1	69

						S	plit Me	etal Sp	rocke	t ^a		
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	ŀ	Available E	Bore Size	s		
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.	Sizes	Metric	: Sizes	1000	
Action)	Dia. In	mm	Dia. In	mm	in	mm	Round in ^b	Square in	Round mm ^b	Square mm	GR	
18 (1.54%)	3.5	89	3.5	89	1.7	43		1.5		40	min O	16
24 (0.86%)	4.6	117	4.7	119	1.7	43	1 1-3/16 1-1/4	1.5	30	40		- manna
26	5.1	130	5.1	130	1.7	43	1	1.5		40		
(0.73%)							1-3/16 1-1/4	2.5		60		
32	6.1	155	6.2	157	1.7	43	1	1.5		40		
(0.48%)							1-3/16 1-1/4 1-1/2	2.5		60		

a. Contact Customer Service for lead times.
b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885

						EZ Tı	r ack ™	Molde	d Spro	cket ^a	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	ļ	Available E	Bore Size	s	
Teeth (Chordal	Pitch	Pitch	Outer	Outer	Hub Width	Hub Width	U.S.	Sizes	Metric	: Sizes	white a
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in	Square in	Round mm	Square mm	I Densa
16 (1.92%)	3.1	79	3.1	79	1.0	25		1.5		40	
18 (1.52%)	3.5	89	3.5	89	1.0	25		1.5		40	and a second and a second
24	4.6	117	4.7	119	1.0	25		1.5		40	
(0.86%)								2.5		60	
32	6.1	155	6.2	157	1.0	25		1.5		40	
(0.48%)								2.5	1	60	

a. Contact Customer Service for lead times.

	EZ Track™ Glass Filled Nylon Split Sprocketª													
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	Available E	Bore Size	S				
Teeth (Chordal	Pitch Dia in	Pitch	Outer	Outer	Hub Width	Hub Width	U.S.	Sizes	Metric	: Sizes				
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round	Square	Round	Square				
							In	in . –	mm	mm				
24 (0.86%)	4.6	117	4.7	119	1.5	38		1.5		40				
32	6.1	155	6.2	157	1.5	38		1.5		40				
(0.48%)								2.5		60				

a. Contact Customer Service for lead times.

					E	Z Tra	ck™/E2	Z Cleai	n™ Sp	rocket
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	Available E	Bore Size	s
Teeth (Chordal	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.	Sizes	Metric	Sizes
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in	Square in	Round mm	Square mm
12 (3.41%)	2.3	58	2.3	58	1.0	25	1.0	1.0	25	25
16	3.1	79	3.1	79	1.0	25	1.0		25	
(1.92%)							1-1/16, 1-1/8, 1-1/4		30	
18 (1.52%)	3.5	89	3.5	89	1.0	25	1.0	1.0		25
20 (1.23%)	3.8	97	3.8	97	1.0	25		1.5		40
24	4.6	117	4.7	119	1.0	25	1.0		25	
(0.86%)							1-1/16, 1-1/8, 1-3/16, 1-1/4		30	
26	5.1	130	5.1	130	1.0	25	1.0	1.5	25	40
(0.73%)							1-1/16, 1-1/8, 1-1/4		30	
32	6.1	155	6.2	157	1.0	25	1.0		25	
(0.48%)							1-1/16, 1-1/8, 1-3/16, 1-1/4 1-1/2		30 40	

a. Contact Customer Service for lead times.

		Flat Top Base Flights	(Streamline)
Available I	Flight Height	Avgilable Materiala	
in	mm	Available Materials	
2	51	Polypropylene, Polyethylene, Acetal	
Note: Flights ca in (13 mm). Note: No faster	an be cut down to	custom heights with a minimum height of 0.25	
Note: Flat Top 1 Note: The Flat	flight is smooth (S Top base streamli	Streamline) on both sides. ine flights are used in both Flat Top and Flush	SALARA AND AND AND AND AND AND AND AND AND AN

Flush Grid Nub Top Base Flights (No-Cling) Available Flight Height Available Materials in mm 2 51 Polypropylene, Polyethylene, Acetal 76 3 Polypropylene, Acetal Note: Flights can be cut down to custom heights with a minimum height of 0.25 Julie in (13 mm). Note: Each flight rises out of the center of the module, molded as an integral part. No fasteners required. Note: The No-Cling vertical ribs are on both sides of the flight.

Note: The minimum recommended indent for Flat Top is 2 in (51 mm). The

minimum recommended indent for Flush Grid is 1.5 in (38 mm).

Note: The minimum recommended indent is 1 in (25 mm).

Sideguards

Available Materiala	Available Sizes				
	mm	in			
Polypropylene, Polyethylene, Acet	51	2			

Note: No fasteners required.

Note: The minimum indent is 1.3 in (33 mm). The standard gap between the sideguards and the edge of a flight is 0.2 in (5 mm).

Note: When going around the 8, 12, 16 and 18 tooth sprockets, the sideguards will fan out, opening a gap at the top of the sideguard which might allow small products to fall out. The sideguards stay completely closed when wrapping around the 24 tooth and larger sprockets.

Note: Standard sideguard orientation is angled inward toward the product (product friendly). If needed, sideguards can be angled outward toward the conveyor.

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

А С A - ±0.031" (1 mm) C - ± (Max) **B -** ±0.125" (3 mm) E - ± (Min)

Complete descriptions of the dimensions are listed on page 423.

Sprocket Description			A	E	3	(C	E		
Pitch D	Diameter	No. Tooth	Range (Botto	m to Top)	in	mm	in	mm	in	mm
in.	mm	NO. TEELIT	in.	mm						
SE	ERIES 110	0 FLUSH GR	ID, FLAT TOP, PE	RFORATED	FLAT T	OP ^a , EN	IBEDDE	D DIAM		P
1.6	41	8	0.53-0.59	13-15	1.02	26	1.70	43	1.00	25
2.3	58	12	0.93-0.97	24-25	1.31	33	2.40	61	1.37	35
3.1	79	16	1.31	33	1.51	38	3.20	81	1.75	44
3.5	89	18	1.51	38	1.66	42	3.60	91	1.94	49
3.8	97	20	1.70	43	1.77	45	3.79	96	2.13	54
4.6	117	24	2.08	53	1.92	49	4.75	121	2.60	66
5.1	130	26	2.28	58	1.96	50	5.14	131	2.73	69
6.1	155	32	2.85	72	2.20	56	6.20	155	3.30	84
	SERIES	6 1100 FLUSH	I GRID FRICTION	TOP ^a , FLUS	H GRID	FRICTIC	N TOP,	NO IND	ENT ^a	
1.6	41	8	0.53-0.59	13-15	1.04	27	1.61	41	1.08	27
2.3	58	12	0.93-0.97	24-25	1.30	33	2.36	60	1.46	37
3.1	79	16	1.31	33	1.55	39	3.12	79	1.84	47
3.5	89	18	1.51	38	1.66	42	3.50	89	2.03	51
3.8	97	20	1.70	43	1.77	45	3.88	98	2.22	56
4.6	117	24	2.08	53	1.97	50	4.64	118	2.60	66
5.1	130	26	2.28	58	2.06	52	5.02	127	2.79	71
6.1	155	32	2.85	72	2.25	57	6.16	157	3.36	85

1100

SERIES 1100

Sprocket Description Α В С Ε **Pitch Diameter** Range (Bottom to Top) No. Teeth in. in. mm in. mm mm in. in. mm mm SERIES 1100 FLUSH GRID NUB TOP^a 1.6 41 8 0.53-0.59 13-15 1.04 1.57 40 1.05 27 27 2.3 58 12 0.93-0.97 24-25 1.30 33 2.32 59 1.42 36 3.1 79 16 1.31 1.55 39 3.08 78 1.80 46 33 89 42 3.46 1.99 3.5 18 1.51 38 1.66 88 51 3.8 97 20 1.70 43 1.70 43 3.84 98 2.18 55 117 53 50 4.60 117 2.56 65 4.6 24 2.08 1.97 130 5.1 26 2.28 58 2.06 52 4.98 127 2.75 70 6.1 155 32 2.85 72 2.25 57 6.13 156 3.32 84 SERIES 1100 CONE TOP^a 1.6 41 8 0.54-0.60 14-15 26 42 1.13 29 1.04 1.66 2.3 58 12 0.93-0.97 24-25 1.30 33 2.41 61 1.50 38 3.1 79 16 34 39 3.17 81 1.88 1.32 1.55 48 3.5 89 18 1.51 38 1.66 42 3.55 90 2.07 53 1.71 43 1.70 43 3.8 97 20 3.93 100 2.26 57 117 24 53 119 4.6 2.09 1.96 50 4.69 2.64 67 5.1 130 26 2.28 58 2.05 52 5.07 129 72 2.83 6.1 155 32 2.86 73 2.24 57 6.22 158 3.41 87

a. Refer to "Anti-sag carryway wearstrip configuration" (page 428) for alternative layouts for the "B" dimension.

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

Sprocket Description			Ga	р
Pitch D	Diameter	No. Tooth	in	mm
in.	mm			
1.6	41	8	0.058	1.5
2.3	58	12	0.040	1.0
3.1	79	16	0.029	0.7
3.5	89	18	0.026	0.7
3.8	97	20	0.024	0.6
4.6	117	24	0.020	0.5
5.1	130	26	0.018	0.4
6.1	155	32	0.015	0.4

SECTION 2

_

1200

in .44 6 .00 - 24% Close Center-d	mm 36.6 152 25.4 - o ed riven					
.44 6 .00 - 24% Close Center-d	36.6 152 25.4 - ed riven					
6 .00 - 24% Close Center-d	152 25.4 - ed riven					
.00 - 24% Close Center-d	25.4 					
- 24% Close Center-d	- ed riven				· ····································	
24% Close Center-d	ed Iriven			La	· ·	
Close Center-d	ed riven nents and			AZZ.	- Color	
Center-d	riven				and a	
es neasurem	nents and			in the second second		
neasurem	nents and					
 a belt. Module thickness is 0.75 in (19.1 mm) which provides superior belt strength and stiffness. Improved Slidelox® rod retention system. Uses headless rods. Molded split plastic sprockets available for easy installation. Made of engineered resin for increased stiffness and minimal belt elongation through thermal expansion. Slidelox is glass reinforced polypropylene 			1.44" NO		44" NOM.	
matio	n		(50.0 min		,0.0 mm)	
5) 9)	e 9)	(9.7 mm)				0.75" (19.1 mm)
	oylene. matio 5) 2 9) <i>ials"</i> (page	oylene. mation 5) 9) ials" (page 9)	mation 5) 9) ials" (page 9)	mation 1.44" NO 5) 0.38" 9) 0.38" jals" (page 9) 0.38"	bylene. mation 5) 9) ials" (page 9) A -Preferred run direction	bylene. 1.44" NOM. 5) 9) ials" (page 9) A -Preferred run direction

Belt Data							
Belt Material	Standard Rod Material Ø 0.31 in	BS	Belt Strength ^a	Temperati (contir	ure Range nuous)	W	Belt Weight
	(7.9 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene Composite	Polypropylene	3300	4908	34 to 220	1 to 104	2.87	14.01

a. Belt strength rating is dependent on belt's preferred running direction. If run in the opposite direction, the belt rating is 2000 lb/ft (3000 kg/m).

Flat	Тор
------	-----

	in	mm	
Pitch	1.44	36.6	
Minimum Width	6	152	
Width Increments	1.00	25.4	
Opening Size (approximate)	-	-	
Open Area	0%		
Hinge Style	Closed		
Drive Method	Center-driven		

Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Module thickness is 0.75 in (19.1 mm) provides superior belt strength and stiffness. In the preferred running direction, the Series 1200 belts are rated at 4000 lb/ft (5950 kg/m).
- Improved Slidelox® rod retention system.
- Uses headless rods.
- Molded split plastic sprockets available for easy installation.
- Made of engineered resin for increased stiffness and minimal belt elongation through thermal expansion.
- Belt strength rating is dependent on belt's preferred running direction. If run in the opposite direction, the belt rating is 2000 lb/ft (3000 kg/m). The belt strength for narrow belts is reduced to 3750 lb/ft (5580 kg/m) for belt widths under 60 in (1524 mm), 3250 lb/ft (4835 kg/m) for belt widths under 30 in (762 mm), and 2750 lb/ft (4090 kg/m) for belt widths under 12 in (305 mm). Contact Customer Service if a more precise belt strength is required for belt widths under 60 in (1524 mm).
 Slidelox is glass reinforced polypropylene.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

Belt Data							
Belt Material	Standard Rod Material Ø 0.31 in	BS	Belt Strength ^a	Temperature Range (continuous)		W	Belt Weight
	(7.9 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene Composite	Polypropylene Composite	4000	5950	-20 to 220	-29 to 104	3.17	15.45
EC Polypropylene Composite	Polypropylene Composite	4000	5950	-20 to 220	-29 to 104	3.2	15.66

a. Belt strength rating is dependent on belt's preferred running direction. If run in the opposite direction, the belt rating is 2000 lb/ft (3000 kg/m). The belt strength for narrow belts is reduced to 3750 lb/ft (5580 kg/m) for belt widths under 60 in (1524 mm), 3250 lb/ft (762 kg/m) for belt widths under 30 in (762 mm), and 2750 lb/ft (4090 kg/m) for belt widths under 12 in (305 mm). Contact Customer Service if a more precise belt strength is required for belt widths under 60 in (1524 mm).

SECTION 2

1200

		Raise	d Rib
	in	mm	
Pitch	1.44	36.6	
Minimum Width	6	152	
Width Increments	1.00	25.4	
Open Area	24	%	
Product Contact Area	24	%	
Hinge Style	Clos	sed	
Drive Method	Center	-driven	A A TELEV
Product	Notes		
 stock status before designing a belt. Module thickness is 1.0 in (25 belt strength and stiffness. Improved Slidelox® rod reten Uses headless rods. Molded split plastic sprockets installation. Made of engineered resin for minimal belt elongation throug Slidelox is glass reinforced point 	ing equipment 5.4 mm) provid tion system. available for e increased stiff thermal exp olypropylene.	es superior easy ness and ansion.	
Additional Ir	nformatio	on	1.44" NOM. (36.6 mm) (36.6 mm)
 See "Belt Selection Process" See "Standard Belt Materials" See "Special Application Belt See "Friction Factors" (page 7) 	(page 5) " (page 9) <i>Materials</i> " (pa 13)	ge 9)	A -Preferred run direction

Belt Data							
Belt Material	Standard Rod Material Ø 0.31 in	BS Belt Strength ^a		Temperature Range (continuous)		W	Belt Weight
	(7.9 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene Composite	Polypropylene	3300	4908	34 to 220	1 to 104	3.3	16.11

a. Belt strength rating is dependent on belt's preferred running direction. If run in the opposite direction, the belt rating is 2000 lb/ft (3000 kg/m).

		Non S	3kid		
	in	mm			
Pitch	1.44	36.6	AL A		
Minimum Width	6	152			
Width Increments	1.00	25.4			
Opening Size (approximate)	-	-			
Open Area	09				
Hinge Style	Closed				
Drive Method	Center	-driven	1		
			1		

- Product Notes
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Module thickness is 0.75 in (19.1 mm) provides superior belt strength and stiffness. In the preferred running direction, the Series 1200 belts are rated at 4000 lb/ft (5950 kg/m).
- Improved Slidelox® rod retention system.
- Uses headless rods.
- Molded split plastic sprockets available for easy installation.
- Made of engineered resin for increased stiffness and minimal belt elongation through thermal expansion; this static dissipative material does not rely on moisture to dissipate a charge, so it is effective in all environments.
- 1.44 in (36.6 mm) pitch allows use of smaller drive sprockets than traditional "moving platform" belts, thus providing tighter transfers and requiring shallower floor trenches for installation.
- Non Skid indent is 1.0 in (25.4 mm).
- Slidelox is glass reinforced polypropylene.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

Belt Data							
Belt Material	Standard Rod Material Ø 0.31 in	BS	Belt Strength ^a	Temperati (contir	ure Range nuous)	W	Belt Weight
	(7.9 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
EC Polypropylene Composite	Polypropylene Composite	4000	5950	-20 to 220	-29 to 104	3.21	15.65

a. Belt strength rating is dependent on belt's preferred running direction. If run in the opposite direction, the belt rating is 2000 lb/ft (3000 kg/m). The belt strength for narrow belts is reduced to 3750 lb/ft (5580 kg/m) for belt widths under 60 in (1524 mm), 3250 lb/ft (762 kg/m) for belt widths under 30 in (762 mm), and 2750 lb/ft (4090 kg/m) for belt widths under 12 in (305 mm). Contact Customer Service if a more precise belt strength is required for belt widths under 60 in (1524 mm).

SERIES 1200

	N	lon Skid F	Raised Rib
	in	mm	
Pitch	1.44	36.6	The man was a start of the second start of the
Minimum Width	6	152	
Width Increments	1.00	25.4	100 million 100
Opening Size (approximate)	-	-	
Open Area	0	%	333.
Product Contact Area	10)%	
Hinge Style	Closed		a shakara
Drive Method	Center-driven		and the second
Product Notes			i i i i i i i i i i i i i i i i i i i

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Made of engineered resin for increased stiffness and minimal belt elongation through thermal expansion; this static dissipative material does not rely on moisture to dissipate a charge, so it is effective in all environments.
- 1.44 in (36.6 mm) pitch allows use of smaller drive sprockets than traditional "moving platform" belts, thus providing tighter transfers and requiring shallower floor trenches for installation.
- Uses Slidelox® rod retention system.
- Uses headless rods.
- Tread pattern provides a non-skid walking surface to increase safety.
- Staggered yellow edges make it easy to distinguish the moving belt from the stationary floor.
- Not recommended for back-up conditions. If friction values between product and belt are required, contact Intralox Sales Engineering.
- Rib indent is 1.0 in (25 mm).
- Slidelox is glass reinforced polypropylene.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

A -Preferred run direction

Belt Data									
Belt Material	Standard Rod Material Ø 0.31 in	BS	Belt Strength ^a	Temperature Range (continuous)		W	Belt Weight		
	(7.9 mm)		kg/m	°F	°C	lb/ft ²	kg/m²		
EC Polypropylene Composite	Polypropylene Composite	4000	5950	-20 to 220	-29 to 104	3.58	17.48		
UV Resistant Acetal ^b	Acetal	2500	3713	-50 to 150	-46 to 66	4.51	22.02		

Belt strength rating is dependent on belt's preferred running direction. If run in the opposite direction, the belt rating is 2000 lb/ft (3000 kg/m). The belt strength a. for narrow belts is reduced to 3750 lb/ft (5580 kg/m) for belt widths under 60 in (1524 mm), 3250 lb/ft (762 kg/m) for belt widths under 30 in (762 mm), and 2750 lb/ft (4090 kg/m) for belt widths under 12 in (305 mm). Contact Customer Service if a more precise belt strength is required for belt widths under 60 in 1524 mm)

b. UV Resistant Acetal requires special sprockets. Please contact Customer Service when ordering sprocket for this belt.

	Sprocket and Support Quantity Reference										
Belt Wid	Ith Range ^a	Minimum Number of	V	/earstrips							
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway							
6	152	2	2	2							
7	178	2	2	2							
8	203	2	2	2							
9	229	2	2	2							
10	254	2	3	2							
12	305	3	3	2							
14	356	3	3	3							
15	381	3	3	3							
16	406	3	3	3							
18	457	3	3	3							
20	508	3	4	3							
24	610	5	4	3							
30	762	5	5	4							
32	813	5	5	4							
36	914	7	5	4							
42	1067	7	6	5							
48	1219	9	7	5							
54	1372	9	7	6							
60	1524	11	8	6							
72	1829	13	9	7							
84	2134	15	11	8							
96	2438	17	12	9							
120	3048	21	15	11							
144	3658	25	17	13							
145	3683	25	18	14							
146	3708	25	18	14							
147	3734	25	18	14							
148	3759	25	18	14							
149	3785	25	18	14							
150	3810	25	18	14							
151	3835	25	18	14							
152	3861	25	18	14							
153	3886	25	18	14							
154	3912	25	19	14							
155	3937	25	19	14							
156	3962	27	19	14							
157	3988	27	19	15							
158	4013	27	19	15							
159	4039	27	19	15							
160	4064	27	19	15							
161	4089	27	19	15							
162	4115	27	19	15							
163	4140	27	20	15							
164	4166	27	20	15							
165	4191	27	20	15							
For Other M	Widths, Use Oo laximum 6 in. (1	dd Number of Sprockets ^c at 52 mm) ⊊ Spacing	Maximum 6 in. (152 mm) & Spacing	Maximum 12 in. (305 mm) & Spacing							

1200 SECTION 2

Sprocket and Support Quantity Reference										
Belt Wic	lth Range ^a	Minimum Number of	N	/earstrips						
in.	mm	Sprockets Per Shaft ^D	Carryway	Returnway						
166	4216	27	20	15						
167	4242	27	20	15						
168	4267	29	20	15						
169	4293	29	20	16						
170	4318	29	20	16						
171	4343	29	20	16						
172	4369	29	21	16						
173	4394	29	21	16						
174	4420	29	21	16						
175	4445	29	21	16						
176	4470	29	21	16						
177	4496	29	21	16						
178	4521	29	21	16						
179	4547	29	21	16						
180	4572	31	21	16						
181	4597	31	22	17						
182	4623	31	22	17						
183	4648	31	22	17						
184	4674	31	22	17						
185	4699	31	22	17						
For Other M	Widths, Use Oc laximum 6 in. (1	dd Number of Sprockets ^c at <mark>52 mm)</mark> ⊊ Spacing	Maximum 6 in. (152 mm) Ç Spacing	Maximum 12 in. (305 mm) & Spacing						

a. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 1.00 in. (25.4 mm) increments beginning with minimum width of 6 in. (152 mm). If the actual width is critical, consult Customer Service.
 b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.

 c. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Locked Sprocket Location chart in the Installation Instruction Guidelines or call Customer Service for lock down location.

Plastic Split Sprocket^a

No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Available Bore Sizes			S	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S. Sizes		Metric Sizes		
(Chordal Action)	Dia. In	Dia. mm	Dia. In	Dia. mm	in	mm	Round in ^b	Square in ^c	Round mm ^b	Square mm	
14	6.5	165	6.3	161	1.5	38		1.5			
(2.51%)								2.5			
17 (1.70%)	7.9	201	7.7	196	1.5	38		2.5			
22	10.2	259	10.1	255	1.67	44		2.5			
(1.02%)					1.5	38	3.5	3.5		90	

a. Contact Customer Service for lead times.

b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

c. The 2.5" square bore is created by using a bore adapter in the 3.5" square bore sprocket.

						S	plit Me	etal Sp	rocke	t ^a		
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	ŀ	Available E	Bore Size	s		A .
Teeth (Chordal	Pitch	Pitch	Outer	Outer	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes	and the second s	E
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in	Square in	Round mm	Square mm	2 C	
12 (3.41%)	5.6	142	5.4	137	1.7	43		2.5			3	
14 (2.51%)	6.5	165	6.3	161	1.7	43		2.5			X	
22	10.2	259	10.1	255	1.7	43		2.5				
(1.70%)								3.5				

a. Contact Customer Service for lead times.

Hold Down Tabs

Note: The strength rating for each Hold Down Tab is 100 lbs (45.4 kg) of force perpendicular to the hold down surface.

Note: Tabs should be spaced every other row (2.9 inches [73.2 mm]) along the length of the belt. Tabs can be spaced every fourth row (5.8 inches [146.3 mm]) for lightly loaded applications.

Note: Each line of tabs along the length of the belt reduces the available number of sprockets by 2. Belt rating is reduced by 1,300 lbs (590 kg) for each line of tabs.

Note: Carryway wearstrip or rollers that engage the tabs are only required at the transition between the horizontal sections and angled sections. This reduces initial system cost, as well as ongoing maintenance cost and effort. **Note:** Care should be taken to ensure that adequate lead-in radii and/or angles are used to prevent the possibility of snagging the tab on the frame. **Note:** A carryway radius should be designed at the transition between horizontal sections and angled sections. This radius must be at least 48 inches

(1.22 m) for belts that will be loaded near the belt's strength rating. This radius is one of the most important factors to take into consideration when designing highly loaded conveyors that utilize Hold Down Tabs. Note: Available on Non Skid and Flat Top belts.

			I	nsert Nut	s	
Available	Base Belt Style	- Material	Available Inse	ert Nut Sizes		
Se Poly	Series 1200 Flat Top - Polypropylene Composite		5/16" (8 mm - 1.	5/16" - 18 (8 mm - 1.25 mm)		
Belt Material	Maximum Fi	xture Weight	Fastener Torque Specification			6.3
	lbs/nut ^a	kg/nut ^a	in-lbs	N-m		100
Polypropylene Composite	355	155	100	11.3		-
from the edge of for even width be width of the belt a increments. Note: All nut place when placing an options available Note: Attachmer the rotation of the Note: Sprockets the belt. Note: For attach should be made	the belt for odd v elts, 1-1/3" (34 mr and spacing alon cement dimensio order. Contact In for your individu- ts that are conne e belt around the cannot be locate ment bases that of to accommodate	vidth belts and 1- m) minimal distar g the length of th ns are referenced tralox Customer al belt specification ected to more than sprockets. d in-line with the extend across muture for reduced back	5/6" (47 mm) mir nee between nuts e belt is in 1.44" d from the edge of Service for nut lo ons. n one row must r locations of the i ultiple rows, cons sbend.	himal indent across the (36.6 mm) of the belt ocation not prohibit nsert nuts in iderations		

Finger Transfer Plates

Availabl	e Widths	Number of	Available Materials					
in	mm	Fingers	Available Materials					
6	152	18	Polypropylene					
Note: Eliminates product transfer and tipping problems. The 18 fingers extend								

Note: Eliminates product transfer and tipping problems. The 18 fingers extend between the belt's ribs allowing a smooth continuation of the product flow as the belt engages its sprockets.

Note: Easily installed on the conveyor frame with the shoulder bolts supplied. Caps snap easily into place over the bolts, keeping foreign materials out of the slots.

Note: The Finger Transfer Plates for Series 400 are the same for Series 1200.

SECTION 2

Two-Material Finger Transfer Plates

Available	e Widths	Number of	Available Materials
in	mm	Fingers	Available ivialenais
6	152	18	Glass-Filled Thermoplastic Fingers, Acetal Backplate

Note: Plates provide high strength fingers combined with a low friction back plate.

Note: Low-friction back plate is permanently attached to the two high-strength finger inserts.

Note: Eliminates product transfer and tipping problems. The 18 fingers extend between the belt's ribs allowing a smooth continuation of the product flow as the belt engages its sprockets.

Note: Plastic shoulder bolts and bolt covers are included for installing the standard two-material FTPs.

Note: Mounting hardware for the Glass Handling two-material FTPs is sold separately and consists of stainless steel oval washers and bolts, which give more secure fastening for the tough glass applications.

Note: The Finger Transfer Plates for Series 400 are the same for Series 1200.

Note: Available in three different configurations:

Standard - long fingers with a short back plate.

Standard Extended Back - long fingers with an extended back plate Glass Handling -

- Short fingers with extended back plate

- Short fingers/short back (Contact Customer Service for lead times.)
- Mid-Length fingers/short back

- Mid-Length fingers/extended back

The long fingers provide good support for unstable products like PET containers and cans. The short fingers are sturdy enough for even the harshest broken glass applications. These fingers are designed to resist breaking, but if confronted with deeply embedded glass, the individual fingers will yield and break off, preventing costly belt or frame damage. The short back plate has two attachment slots and the extended back plate has three attachment slots.

Note: For best product transfer, 10.2 in (259 mm) PD, 22 tooth sprockets are recommended for use with Glass Handling finger transfer plates. The 10.2 in (259 mm) PD 22 tooth sprockets are also the maximum size sprockets to use with short finger Glass Handling finger transfer plates. **Note:** Intralox also offers a single-material polypropylene standard finger transfer plate for better chemical resistance. Mounting hardware for this FTP includes plastic shoulder bolts and snap-cap bolt covers.

SECTION 2

		Di	mensi	onal R	equir	emer	nts foi	r Fing	er Transfer Plate Installation
				Two-M	aterial				Two-material glass handling finger tra
	Stan Lo Fing Short	dard ng ers - Back	Standar Fing Extende	rd Long ers - ed Back	Gla Hand Sh Fing Exte Ba	ass dling ort jers - nded ack	Gla Handli Ler Fing Exte Ba	ass ng Mid- ngth ers - nded nck	2.25" (57 mm)
	in	mm	in	mm	in	mm	in	mm	
F	3.50	89	3.50	89	3.50	89	3.50	89	
G	0.31	8	0.31	8	0.31	8	0.31	8	
Н	7.25	184	10.75	273	8.26	210	9.04	230	
I	5.91	150	5.91	150	5.91	150	5.91	150	
J	3.00	76	3.00	76	3.00	76	3.00	76	
К	1.45	37	1.45	37	1.45	37	1.45	37	
L	2.00	51	5.50	140	5.50	140	5.50	140	K <u>⊢−−</u> F <u>∕−</u> ²
Spacing at			Poly	propylen	e Comp	osite			0.5" (13 mm) -
ambient temperature	6.0	152.4	6.0	152.4	6.0	152.4	6.0	152.4	G 3 4 1 - SPACING 2 - 0.5" (13 mm) RADIUS (LEADING EDGE 3 - FRAME MEMBER

Two-material glass handling finger transfer plate shown

- SPACING
- 0.5" (13 mm) RADIUS (LEADING EDGE OF FRAME MEMBER)
- FRAME MEMBER

Self-Clearing Finger Transfer Plates ^a								
Availab	le Width	Number of	Available Matariala					
in	mm	Fingers	Available ivialerials	Fin				
6	152	18	Glass-Filled Thermoplastic					
Note: The Self-	Clearing Finger	Transfer System	consists of a finger transfer					

plate and a transfer edge belt that are designed to work together. This system eliminates the need for a sweeper bar, a pusher arm, or wide transfer plates. Transfers are smooth and 100% self-clearing, making right angle transfers possible for all container types. The Self-Clearing Finger Transfer System is ideal for warmer/cooler applications with frequent product changeovers and is compatible with any series and style of Intralox belt on the discharge and infeed conveyors. This system is bi-directional allowing the same transfer belt to be used for both left-hand and right-hand transfers.

Note: Self-Clearing Finger Transfer System is capable of transferring product to and from Intralox Series 400, Series 1200 and Series 1900 Raised Rib belts.

Note: Smooth, flat top surface provides excellent lateral movement of containers.

Note: Robust design for durability in tough glass applications.

Note: Finger Transfer Plates are easily installed and secured to mounting plates of any thickness with stainless steel bolts and oval washers that allow movement with the belt's expansion and contraction.

Note: Stainless steel hardware is sold separately.

Note: Self-Clearing Transfer Edge Belt is molded with robust tracking tabs for belt support in heavy side-loading conditions. It has fully flush edges, headed rod retention system and nylon rods for superior wear resistance.

a. Licensed under Rexnord U.S. Patent Nos. 7,314,130 and 7,448,490

SECTION 2

a. Licensed under Rexnord U.S. Patent Nos. 7,314,130 and 7,448,490

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

SERIES 1200

Complete descriptions of the dimensions are listed on page 423.

Sp	rocket Des	scription	А	В		С		E				
Pitch D	Diameter	No. Tooth	Range (Bottor	ange (Bottom to Top)			in	mm	in	mm		
in.	mm	NO. Teeth	in.	mm								
	SERIES 1200 FLUSH GRID, FLAT TOP											
5.6	142	12	2.31-2.41	59-61	2.15	55	5.56	141	3.22	82		
6.5	165	14	2.78-2.87	71-73	2.35	60	6.48	165	3.87	98		
7.9	201	17	3.48-3.55	88-90	2.62	67	7.85	199	4.55	116		
10.2	259	22	4.64-4.69	118-119	3.02	77	10.13	257	5.69	145		
	SERIES 1200 RAISED RIB, NON-SKID RAISED RIB											
5.6	142	12	2.31-2.41	59-61	2.15	55	5.81	148	3.47	88		
6.5	165	14	2.78-2.87	71-73	2.35	60	6.73	171	4.12	105		
7.9	201	17	3.48-3.55	88-90	2.62	67	8.10	206	4.80	122		
10.2	259	22	4.64-4.69	118-119	3.02	77	10.38	264	5.94	151		
			SERIE	ES 1200 NON	SKID							
5.6	142	12	2.31-2.41	59-61	2.15	55	5.65	144	3.30	84		
6.5	165	14	2.78-2.86	71-73	2.34	59	6.56	167	3.76	96		
7.9	201	17	3.51-3.58	89-91	2.57	65	7.99	203	4.47	114		
10.2	259	22	4.67-4.73	119-120	3.02	77	10.29	261	5.62	143		

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Descriptio	Gap			
Pitch D	iameter	No. Tooth	in		
in.	mm	NO. Teetii			
5.6	142	12	.095	2.4	
6.5	165	14	.081	2.1	
7.9	201	17	.067	1.7	
10.2	259	22	.052	1.3	

		Гор	
	in	mm	121211111111111111111
Pitch	1.00	25.4	NEW BURNER BURNER
Minimum Width	5	127	and the second s
Width Increments	1.00	25.4	
Opening Size (approximate)	-	-	
Open Area	00	%	ANTES () and
Hinge Style	Clo	sed	
Drive Method	Center/hir	ige-driven	the to the to be
Product	Notes		
 stock status before designi a belt. Smooth, closed surface with f Uses headless rods. Robust design offers exceller durability, especially in tough Smooth, flat top provides exc containers. Ideal for containe Most Series 1400 sprockets u shafts do not have to be remo changeovers. The Series 1400 split sprockets "lug" style teeth for excellent Uses Slidelox® rod retention available in polypropylene or Easy Release PLUS uses a p Easy Release Traceable Poly detectable polypropylene Slide 	fully flush edge fully flush edge at belt and spro glass applicat ellent lateral m r handling. Use the split de oved for retrofi 00 sprockets an ets are designed durability and system. Slidel acetal. polypropylene use lelox.	es. ocket ions. ovement of esign so ts and re all plastic. ed with thick, wear life. ox is Slidelox. es a	Inset: Slidelox® Edge
Additional Information • See "Belt Selection Process" (page 5) • See "Standard Belt Materials" (page 9) • See "Special Application Belt Materials" (page 9) • See "Friction Factors" (page 13)			(6.4 mm) (6.4 mm) (1.00" NOM. (25.4 mm) (25.4 mm)

1400 SECTION 2

189

Belt Data										
Belt Material	Belt Material Standard Rod Material Ø 0.24 in			Temperati (contir	ure Range nuous)	W	Belt Weight			
(6.1 mm)		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²			
Acetal	Nylon	2500	3720	-50 to 200	-46 to 93	2.75	13.4			
Polypropylene	Nylon	1800	2678	34 to 220	1 to 104	1.85	9.03			
HHR Nylon	Nylon	2000	2976	-50 to 310	-46 to 154	2.32	11.33			
HSEC Acetal	Nylon	1600	2380	-50 to 200	-46 to 93	2.69	13.13			

Mold to Width Flat Top

Produ	uct Notes			
Drive Method	Center/hir	nge-driven		
Hinge Style	Closed			
Open Area	0	%		
Opening Size (approximate)	-	-		
	-	85.0		
	7.5	191		
	6.0	152		
	4.5	114		
Molded Widths	3.25	83		
Pitch	1.00	25.4		
	in	mm		

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Tracking tabs provide lateral tracking.
- Smooth, closed surface with fully flush edges.
- Uses headless rods.
- Robust design offers excellent belt and sprocket durability, especially in tough, glass applications.
- Smooth, flat top provides excellent lateral movement of containers. Ideal for container handling.
- Optional tracking tabs fit into single barreled belt wearstrip with 1.75 in (44.5 mm) spacing.
 One sprocket can be placed on the 3.25 in (83 mm) mold to width belt and the 4.5 in (114 mm) tabbed mold to width belt. One or two sprockets can be placed on the 4.5 in (114 mm) no tab mold to width belt. Up to three sprockets can be placed on the 6.0 in (152 mm) and the 7.5 in (191 mm) mold to width belt.
- Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and changeovers. The Series 1400 sprockets are all plastic.
- The Series 1400 split sprockets are designed with thick, "lug" style teeth for excellent durability and wear life.
- Width tolerances for the Series 1400 Mold To Width belts are +0.000/-0.020 in (+0.000/-0.500 mm).
- Series 1400 Mold To Width belts are boxed in 10 ft. (3.05 m) increments.
- Utilizes Slidelox® rod retention system. Slidelox® is available in polypropylene or acetal.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

	1	_		1				
1	ß			Γ				
0.50" (12.7 mm)	_	0.325 (8.3 m	5" m)		1 1/16 <u>'</u> (27 mm 1.657'' (42.1 mr		-	

Series 1400 Flat Top Mold to Width

Series 1400 Flat Top 85 mm Mold to Width

	Belt Data										
Belt \	Width	Belt Material	Standard Rod Material Ø 0.24 in		Rod Material BS		Temperature Range (continuous)			Belt Weight	
			(6.1 mm)	Belt Str	ength ^a			Ta	ab	No	Tab
inch	mm			lb	kg	°F	°C	lb/ft	kg/m	lb/ft	kg/m
3.25	83	Acetal	Nylon	700	318	-50 to 200	-46 to 93	0.80	1.19	0.75	1.12
	85	Acetal	Nylon	700	318	-50 to 200	-46 to 93	0.80	1.19	-	-
4.5	114	Acetal	Nylon	850	386	-50 to 200	-46 to 93	1.13	1.68	1.07	1.59
6.0	152	Acetal	Nylon	1200	544	-50 to 200	-46 to 93	1.40	2.08	1.35	2.01
7.5	191	Acetal	Nylon	1550	703	-50 to 200	-46 to 93	1.75	2.60	1.71	2.54
6.0	152	Polypropylene	Nylon	850	386	34 to 220	1 to 104	0.95	1.14	0.90	1.34
4.5	114	HHR Nylon	Nylon	850	386	-50 to 310	-46 to 154	0.95	1.41	1.07	1.59
6.0	152	HHR Nylon	Nylon	1200	544	-50 to 310	-46 to 154	1.18	1.76	1.35	2.01
7.5	191	HHR Nylon	Nylon	1550	703	-50 to 310	-46 to 154	1.47	2.19	1.71	2.54

a. Ratings are based on non-tabbed belts using the maximum number of sprockets.

SECTION 2

inmmPitch1.0025.4Molded Width6152Width Increments
Pitch1.0025.4Molded Width6152Width Increments
Molded Width6152Width Increments
Width Increments
Open Area 0%
Hinge Style Closed
Drive Method Center/hinge-driven
Dreduct Notes
 Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt. Transfer edge is an integral part of this belt, designed for smooth, self-clearing, right angle transfers onto takeaway belts. Uses headless rods. Smooth, flat top surface with fully flush edges provides excellent lateral movement of containers, especially PET, and glass. Built with nylon rods for superior wear resistance. Utilizes Slidelox® rod retention system. Slidelox is available in polypropylene or acetal. Robust design offers excellent belt and sprocket durability, especially in tough, glass applications. Molded with robust tracking tabs to support belt in heavy, sideloading applications. When product is moving from the transfer belt to a takeaway belt, the top of the transfer belt should be no more than 0.06 in (1.5 mm) above the top of the takeaway belt. When product is moving from the infeed belt onto the transfer belt prior to the belts should be level. You may need to include a fixed frame support member beneath the <u>ONEPIECE</u>TM Live Transfer belt prior to the actual transfer. This ensures that the belt does not snag when it intersects with the takeaway belt. See "Fig. 3–31 PARABOLIC GUIDE RAIL CONTOURS WITH 6.0 in. (152 mm) ONEPIECETM LIVE TRANSFER BELT" (page 442) Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and changeovers. The Series 1400 split sprockets are designed with thick, "lug" style teeth for excellent durability and wear life. Series 1400 Live Transfer belts are boxed in 10 ft. (3.05 m) increments.
increments.
Additional Information
See "Standard Belt Materials" (page 9)
See "Special Application Belt Materials" (page 9)
• See "Friction Factors" (page 13)

Belt Data								
Belt Material	Standard Rod Material Ø 0.24 in (6.1 mm)	BS	Belt Strength	Temperati (contir	ure Range nuous)	W	Belt Weight	
		lb	kg	°F	°C	lb/ft	kg/m	
Acetal	Nylon	850	386	-50 to 200	-46 to 93	1.25	1.86	

6"	Flat Top N	lold to Wid	th Self-Clearing Edge
	in	mm	
Pitch	1.00	25.4	EFF F F F F
Minimum Width	6	152	
Width Increments	-	-	
Opening Sizes (approx.)	-	-	A A A A A A A A A A A A A A A A A A A
Open Area	()%	and a start and a start
Hinge Style	Clo	osed	
Drive Method	Center/Hi	nge-Driven	and the second sec
Product	Notes		
 Fully flush edges. Uses headed rods. Robust design offers excellent be especially in tough, material hand Most Series 1400 sprockets use not have to be removed for retrois Series 1400 sprockets are plastice. 100% self-clearing transfers of a energy drink cans, when used in plate. Belt is bidirectional. It can perform 	elt and sprocke dling applicatio the split desigr fits and change c. Il container type conjunction with n left- and right	t durability, ns. n so shafts do overs. All es, including n finger transfer -hand transfers.	
Additional Information			(25.4 mm) (25.4 mm) 0.3" NOM.
 See "Belt Selection Process" (page 5) See "Standard Belt Materials" (page 9) See "Special Application Belt Materials" (page 9) See "Friction Factors" (page 13) 			(25.4 mm) (25.4
		ata	

intralox

Belt Data							
Belt Material	Standard Rod Material Ø 0.24 in	BS Belt Strength		Temperature Range (continuous)		W	Belt Weight
	(6.1 mm)	lb	kg	°F	°C	lb/ft	kg/m
Acetal	Nylon	1000	454	-50 to 200	-46 to 93	1.08	1.61

ONEP	IECE™ 9.3	in (236 m				
	in	mm				
Pitch	1.00	25.4				
Molded Width	9.3	236				
Width Increments	-	-				
Open Area	0)%				
Hinge Style	Clo	osed				
Drive Method	Center/Hi	nae-driven				
Draduat		ngo unvon				
Contact Intraley for procise b		nte and stack				
 Status before designing equip Transfer edge is an integral par smooth, self-clearing, right angl Smooth, flat top surface with ful excellent lateral movement of coglass. Uses headless rods. Built with nylon rods for superior Slidelox® rod retention system. polypropylene or acetal. Robust design offers excellent I especially in tough, glass applic Molded with robust tracking tab loading applications. Tab heigh spacing is 1 11/16 in (43 mm). When product is moving from the belt, the top of the transfer belt (1.5 mm) above the top of the tamoving from the infeed belt onto belts should be level. You may need to include a fixed beneath the ONEPIECE™ Live actual transfer. This ensures that intersects with the takeaway bel <i>GUIDE RAIL CONTOURS WIT</i> ONEPIECE™ LIVE TRANSFE Most Series 1400 sprockets used not have to be removed for retrosents style teeth for excellent durabilit Series 1400 Live Transfer belts 	r wear resistance Slidelox® is available at of spectrum ontainers, espectrum slidelox® is available belt and sprocke cations. s to support belt t is 0.35 in (8.9 r he transfer belt to should be no mo akeaway belt. W to the transfer belt to the support to the split design of the split design of the split design of the split design of the split design	ng a belt. signed for takeaway belts rovides sially PET and e. Uses ailable in t durability, in heavy, side- nm). Tab t durability, in heavy, side- nm). Tab				
Series 1400 Live Transfer belts are boxed in 10 ft. (3.05 m)						
increments.	rements.					
Additional I	nformation					
 See "Belt Selection Process" (p See "Standard Belt Materials" () 	See "Belt Selection Process" (page 5) See "Standard Belt Materials" (page 9)					
See "Special Application Belt M	laterials" (page 9	9)				
See "Friction Factors" (page 13)					
See "90° Container Transfers" (page 441)	e "90° Container Transfers" (page 441)				

Belt Data								
Belt Material	Standard Rod Material Ø 0.24 in (6.1 mm)	BS	Belt Strength	Temperati (contir	ure Range nuous)	W	Belt Weight	
		lb	kg	°F	°C	lb/ft	kg/m	
Acetal	Nylon	1550	703	-50 to 200	-46 to 93	1.86	2.77	

		Grid	
	in	mm	"
Pitch	1.0	25.4	1
Minimum Width	9	229	5. J. J. J. M.
Width Increments	1.0	25.4	
Opening Size (approx.)	0.17 × 0.30	4.2 × 7.6	
Open Area	21	%	
Hinge Style	Clos	sed	
Drive Method	Center/Hir	ige-driven	
Product	Notes		
 stock status before designing a belt. Uses headless rods. Uses Slidelox® rod retention available in polypropylene or Polypropylene belts are grey Acetal belts are grey with yell Installation is the same as cur the addition of a locked sproce preferred run direction. Minimum sprocket spacing is recommended for an adjusted 900 lb/ft (1339 kg/m). Maximus spacing is 6 inches (152.4 mr) Fully flush edges with Slidelox 	system. Slidelo acetal. with blue PP S ow AC Slidelo rrent Series 14 ket location ch 3 inches (76.2 d belt pull grea im recomment n). c closures.	Arrow indicates run direction	
See "Belt Selection Process" (page 5) See "Standard Belt Materials" (page 9) See "Special Application Belt Materials" (page 9) See "Friction Factors" (page 13)			(25.4 mm) (25.4

intralox

Belt Data										
Belt Material	BS	Belt Strength ^a	Temperatu (contir	ure Range nuous)	W	Belt Weight				
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²			
Polypropylene	Polypropylene	1800	2679	34 to 220	1 to 104	1.61	7.86			
Polypropylene	Nylon	1800	2679	34 to 220	1 to 104	1.66	8.10			
Acetal	Nylon	2500	3720	-50 to 200	-46 to 93	2.52	12.30			

a. Belt strength is divided by 2 when using 6 inch sprocket spacing; full strength when using 3 inch sprocket spacing.

in mm Pitch 1.00 25.4 Minimum Width 5 127 Width Increments 1.00 25.4 Hinge Style Closed Drive Method Center/Hinge-driven Product Notes Image: Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt. • Fully flush edges with Slidelox® rod retention feature. Slidelox® is available in polypropylene or acetal. Image: Contact Intralox for precise belt measurements and stock status before design offers excellent belt and sprocket durability, especially in tough, material handling applications. • Uses headless rods. Standard indents for friction top surface are 2.0 in (50.8 mm) and 0.22 in (5.6 mm). • Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and changeovers. Friction top available in grey PP with grey rubber, grey PP with black rubber, white PP with white rubber, and black PE with black rubber, white PP with white rubber, and black PE with black rubber. If a center-drive setup is used, it may be necessary to place collars to laterally retain the belt at the backbend roller before the drive. • Temperature, environmental conditions, and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts. Image: Still black in the back in the back in the back in the back back in the back band on the design in the back in the back back		Intra	alox [®] Flat	Friction Top
Pitch 1.00 25.4 Minimum Width 5 127 Width Increments 1.00 25.4 Hinge Style Closed Drive Method Center/Hinge-driven Product Notes Product Notes • Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt. • • Fully flush edges with Slidelox® rod retention feature. Slidelox® is available in polyproylene or acetal. • • Robust design offers excellent belt and sprocket durability, especially in tough, material handling applications. • • Uses headless rods. • Standard indents for friction top surface are 2.0 in (50.8 mm) and 0.22 in (5.6 mm). • Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and changeovers. • • Friction top available in grey PP with grey rubber, grey PP with black rubber, white PP with white rubber, and black PE with black rubber. • • If a center-drive setup is used, it may be necessary to place collars to laterally retain the belt at the backbend roller before the drive. • • Temperature, environmental conditions, and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts. • • Temperature bet setup • •<		in	mm	1123333333443
Minimum Width 5 127 Width Increments 1.00 25.4 Hinge Style Closed Drive Method Center/Hinge-driven Product Notes Product Notes • Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt. • Fully flush edges with Slidelox® rod retention feature. Slidelox® is available in polypropylene or acetal. • Robust design offers excellent belt and sprocket durability, especially in tough, material handling applications. • Uses headless rods. • Standard indents for friction top surface are 2.0 in (50.8 mm) and 0.22 in (5.6 mm). • Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and changeovers. • Friction top available in grey PP with grey rubber, grey PP with black rubber, white PP with white rubber, and black PE with black rubber. • If a center-drive setup is used, it may be necessary to place collars to laterally retain the belt at the backbend roller before the drive. • Temperature, environmental conditions, and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts. • Letter drive date date date date date date date dat	Pitch	1.00	25.4	66/ 1 CAR SA
Width Increments 1.00 25.4 Hinge Style Closed Drive Method Center/Hinge-driven Product Notes Product Notes • Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt. • Fully flush edges with Slidelox® rod retention feature. Slidelox® is available in polypropylene or acetal. • Robust design offers excellent belt and sprocket durability, especially in tough, material handling applications. • Uses headless rods. • Standard indents for friction top surface are 2.0 in (50.8 mm) and 0.22 in (5.6 mm). • Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and changeovers. • Friction top available in grey PP with grey rubber, grey PP with black rubber, white PP with white rubber, and black PE with black rubber. • If a center-drive setup is used, it may be necessary to place collars to laterally retain the belt at the backbend roller before the drive. • Temperature, environmental conditions, and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts. • Most Method the dure of the diffective maximum degree of incline.	Minimum Width	5	127	3661 5 5 4 4
Hinge Style Closed Drive Method Center/Hinge-driven Product Notes • Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt. • Fully flush edges with Slidelox® tod retention feature. Slidelox® is available in polypropylene or acetal. • Robust design offers excellent belt and sprocket durability, especially in tough, material handling applications. • Uses headless rods. • Standard indents for friction top surface are 2.0 in (50.8 mm) and 0.22 in (5.6 mm). • Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and changeovers. • Friction top available in grey PP with black rubber, white PP with white rubber, and black PE with black rubber. • If a center-drive setup is used, it may be necessary to place collars to laterally retain the belt at the backbend roller before the drive. • Temperature, environmental conditions, and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts. Inset: SLIDELOX® Rod Retention Feature	Width Increments	1.00	25.4	
Drive Method Center/Hinge-driven Product Notes • Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt. • Fully flush edges with Slidelox® rod retention feature. Slidelox® is available in polypropylene or acetal. • Robust design offers excellent belt and sprocket durability, especially in tough, material handling applications. • Uses headless rods. • Standard indents for friction top surface are 2.0 in (50.8 mm) and 0.22 in (5.6 mm). • Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and changeovers. • Friction top available in grey PP with black rubber. • If a center-drive setup is used, it may be necessary to place collars to laterally retain the belt at the backbend roller before the drive. • Temperature, environmental conditions, and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts.	Hinge Style	Clo	sed	
 Product Notes Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt. Fully flush edges with Slidelox® rod retention feature. Slidelox® is available in polypropylene or acetal. Robust design offers excellent belt and sprocket durability, especially in tough, material handling applications. Uses headless rods. Standard indents for friction top surface are 2.0 in (50.8 mm) and 0.22 in (5.6 mm). Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and changeovers. Friction top available in grey PP with grey rubber, grey PP with black rubber, white PP with white rubber, and black PE with black rubber. If a center-drive setup is used, it may be necessary to place collars to laterally retain the belt at the backbend roller before the drive. Temperature, environmental conditions, and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts. 	Drive Method	Center/Hir	nge-driven	- Alta Alta Alta
 Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt. Fully flush edges with Slidelox® rod retention feature. Slidelox® is available in polypropylene or acetal. Robust design offers excellent belt and sprocket durability, especially in tough, material handling applications. Uses headless rods. Standard indents for friction top surface are 2.0 in (50.8 mm) and 0.22 in (5.6 mm). Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and changeovers. Friction top available in grey PP with grey rubber, grey PP with black rubber, white PP with white rubber, and black PE with black rubber. If a center-drive setup is used, it may be necessary to place collars to laterally retain the belt at the backbend roller before the drive. Temperature, environmental conditions, and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts. 	Prod	uct Notes		
	 available in polypropyler Robust design offers excel especially in tough, materia Uses headless rods. Standard indents for friction and 0.22 in (5.6 mm). Most Series 1400 sprocket not have to be removed for Friction top available in gre black rubber, white PP with black rubber. If a center-drive setup is us collars to laterally retain the the drive. Temperature, environment characteristics affect the eff Take these items into cons systems utilizing these belt 	al conditions, and pro perfective maximum deg al handling application in top surface are 2.0 if is use the split design r retrofits and changed by PP with grey rubbe in white rubber, and bla sed, it may be necess belt at the backbend al conditions, and pro ffective maximum deg ideration when design is.	durability, as. an (50.8 mm) so shafts do overs. r, grey PP with ack PE with ary to place d roller before duct ree of incline. hing conveyor	Inset: SLIDELOX® Rod Retention Feature
	See "Belt Selection Proces	ss" (page 5)		0.45"

- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

	Belt Data										
Base Belt Material	Base/Friction Color	Standard Rod Material	BS	Belt Strength	Temperat (conti	ure Range nuous)	W	Belt Weight	Friction Top Hardness	Agency Acc	eptability
		Ø 0.24 in (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²		FDA (USA)	EU MC ^b
Polypropylene	Grey/Grey	Nylon	1800	2678	34 to 150	1 to 66	2.62	12.79	64 Shore A		
Polypropylene	Grey/Black	Nylon	1800	2678	34 to 150	1 to 66	2.62	12.79	55 Shore A	а	
Polypropylene	White/White	Nylon	1800	2678	34 to 150	1 to 66	2.62	12.79	55 Shore A	а	с
Polyethylene	Black/Black	Nylon	1000	1488	-50 to 120	-46 to 49	2.70	13.18	-	а	
1											

- Fully compliant

a - FDA Compliant with Restriction: Do not use in direct contact with fatty foods.

b - European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.

- EU compliant with Restriction: Do not use in direct contact with fatty foods.

Г

	2 di	uare Fri	ction lop
	in	mm	No Ma Ma Martin and a state of the state of
Pitch	1.00	25.4	
Minimum Width	6	152	
Width Increments	1.00	25.4	
Hinge Style	Clo	sed	
Drive Method	Center/hir	nge-driven	
Product	Notes		
 Contact Intralox for precise stock status before designi a belt. Fully flush edges with Slidelox Slidelox is available in polypre. Uses headless rods. Robust design offers exceller durability, especially in tough applications. Most Series 1400 sprockets u shafts do not have to be remore changeovers. The Series 1400 Friction top available in grey I black PE with black rubber. Minimum nominal alternating (51 mm) and 3 in (76 mm). If a center-drive setup is used place collars to laterally retair roller before the drive. Temperature, environmental characteristics affect the effect incline. Take these items into designing conveyor systems Additional In See "Standard Belt Materials" See "Special Application Belt" 	belt measure ng equipment x® rod retention opylene or accent to belt and spro- , material hand use the split de oved for retrofi 00 sprockets and PP with black edge indents d, it may be ne the belt at the conditions, and ctive maximum consideration utilizing these formation (page 5) " (page 9) to Materials" (page 13)	ements and t or ordering on feature. etal. ocket dling esign so ts and re all plastic. rubber and of 2 in cessary to e backbend d product n degree of when belts. ON	Inset: SLIDELOX® Rod Retention Feature
		Belt D	Data
Base Belt Material Base/Friction	Standard Rod	Belt	Temperature Range Belt Friction Top Agency Acceptability

^---

intralox

	Beit Data										
Base Belt Material	Base/Friction Color	Standard Rod Material	BS	Belt Strength	Temperatu (contir	ure Range 1uous)	W	Belt Weight	Friction Top Hardness	Agency Acc	eptability
		Ø 0.24 in (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²		FDA (USA)	EU MC ^b
Polypropylene	Grey/Black	Nylon	1800	2678	34 to 150	1 to 66	2.60	12.69	50 Shore A	а	
Polyethylene	Black/Black	Nylon	1000	1488	-50 to 120	-46 to 49	2.68	13.08	-	а	
F I I I											

Fully compliant

a - FDA Compliant with Restriction: Do not use in direct contact with fatty foods.

b - European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.

c - EU compliant with Restriction: Do not use in direct contact with fatty foods.

3.2	5 in Mold to	Width Flat	Friction T
	in	mm	
Pitch	1.00	25.4	1
Molded Width	3.25	83	1
Opening Sizes (approx.)	-	-	1
Open Area	0'	%	
Hinge Style	Clo	sed	1
Drive Method	Center/Hir	nge-Driven	
Produc	t Notes		
 status before designing equivation Not recommended for back-up between product and belt are Engineering. Tracking tabs provide lateral the Fully flush edges with Slidelox. Brobust design offers excellent especially in tough, material has Available in blue acetal with ble Indent for Friction Top surface. One sprocket can be placed or Width tabbed belt. Width tolerances for the Series +0.000/-0.020 in (+0.000/-0.500) Most Series 1400 sprockets us not have to be removed for references 1400 sprockets are all placed or Series 1400 sprockets are all placed or Series 1400 sprockets are all placed to the series status and the series status affect the effect these items into conside systems utilizing these belts. 	ipment or orderin o conditions. If fric required, contact I racking. crod retention feat t belt and sprocket andling application lack rubber. is 0.5 in (12.7 mm n the 3.25 in (83 m s 1400 Mold to Win 00 mm). se the split design trofits and changed plastic. Its are boxed in 10 conditions, and pro tive maximum deg ration when design	ng a belt. tion values intralox Sales ure. durability, is. n). nm) Mold To dth belts are so shafts do overs. The ft. (3.05 m) duct ree of incline. ning conveyor	
	Information		
 See Bent Selection Process" (See "Standard Belt Materials" See "Special Application Belt" 	page 5) (page 9) <i>Materials"</i> (page 9))	

				Belt	Data						
Base Belt Material	Base/Friction Color	Standard Rod Material	BS	Belt Strength	Temperati (contir	ure Range nuous)	W	Belt Weight	Friction Top Hardness	Agency Acc	eptability
		Ø 0.24 in (6.1 mm)	lb	kg	°F	°C	lb/ft	kg/m		FDA (USA)	EU MC ^b
Acetal	Blue/Black	Nylon	700	318	-10 to 130	-23 to 54	0.94	1.40	54 Shore A		
- Fully compliant											

- FDA Compliant with Restriction: Do not use in direct contact with fatty foods.

- European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.

SECTION 2

Mold to Width Square Friction Top in mm Pitch 1.00 25.4 6 Molded Width 152 Open Area 0% Hinge Style Closed Drive Method Center/hinge-driven **Product Notes** Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt. Fully flush edges with Slidelox® rod retention feature. Slidelox is available in polypropylene or acetal. • Uses headless rods. • Robust design offers excellent belt and sprocket durability, especially in tough, material handling applications. Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and changeovers. The Series 1400 sprockets are all plastic. • Available in grey PP with black rubber. Rubber indent is 1.0 in (25.4 mm). • If a center-drive setup is used, it may be necessary to place collars to laterally retain the belt at the backbend roller before the drive. Temperature, environmental conditions, and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts. • Up to three sprockets can be placed on the 6.0 in (152 mm) mold to width belt. Width tolerances for the Series 1400 Mold To Width belts are +0.000/-0.020 in (+0.000/-0.500 mm). Series 1400 Mold To Width belts are boxed in 10 ft. (3.05 m) increments. Additional Information 1.00" NOM 1.00" NOM 1.00" NOM. • See "Belt Selection Process" (page 5) 0.45 • See "Standard Belt Materials" (page 9) See "Special Application Belt Materials" (page 9) See "Friction Factors" (page 13)

				Belt	Data						
Base Belt Material	Base/Friction Color	Standard Rod Material	BS	Belt Strength	Temperat (contin	ure Range nuous)	W	Belt Weight	Friction Top Hardness	Agency Acc	eptability
		Ø 0.24 in (6.1 mm)	lb	kg	°F	°C	lb/ft	kg/m		FDA (USA)	EU MC ^b
Polypropylene	Grey/Black	Nylon	800	386	34 to 150	1 to 66	1.15	1.71	50 Shore A	а	
- Fully compliant											

a - FDA Compliant with Restriction: Do not use in direct contact with fatty foods.

b - European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.

- EU compliant with Restriction: Do not use in direct contact with fatty foods.

SECTION 2

0.2"

0.7" (17.8 mm)

1.00" NOM

	0	val Fric ^a	tion Top
	in	mm	
Pitch	1.00	25.4	
Minimum Width	5	127	and the second of the second s
Width Increments	1.00	25.4	
Open Area	0	%	
Hinge Style	Clo	sed	
Drive Method	Center/hir	nge-driven	to to to to to to to to to
Product	Notes		
 Contact Intralox for precise stock status before designin a belt. Fully flush edges with Slidelox Slidelox is available in polypre Uses headless rods. Robust design offers exceller durability, especially in tough, applications. Available in grey PP with blace Most Series 1400 sprockets u shafts do not have to be remote changeovers. The Series 1400 Rubber indent is 1.0 in (25.4) If a center-drive setup is used place collars to laterally retain roller before the drive. Temperature, environmental of characteristics affect the effect incline. Take these items into designing conveyor systems 	belt measure ng equipmen x® rod retention pylene or acce at belt and spre- material hand the belt and spre- material hand the split de pyed for retrofie 0 sprockets a mm). I, it may be ne the belt at the conditions, an ctive maximum consideration utilizing these	ements and t or ordering on feature. etal. ocket dling esign so ts and re all plastic. cessary to e backbend d product n degree of when belts.	
Additional Ir	nformati	on	- 1.00" NOM. 1.00" NOM. 1.00" NOM. 1.00" NOM. 1.00" NOM. 1.00" NOM. 1.00" (5.1 mm)
 See "Belt Selection Process" See "Standard Belt Materials See "Special Application Belt 	(page 5) " (page 9) <i>Materials</i> " (pa	ige 9)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Belt Data

Base Belt Material	Base/Friction Color	Standard Rod Material	BS	Belt Strength	Temperati (contir	ure Range nuous)	W	Belt Weight	Friction Top Hardness	Agency Acc	eptability
		Ø 0.24 in (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²		FDA (USA)	EU MC ^b
Polypropylene	Grey/Black	Nylon	1800	2678	34 to 150	1 to 66	2.29	11.18	55 Shore A	а	

Fully compliant

a - FDA Compliant with Restriction: Do not use in direct contact with fatty foods.

See "Special Application Belt Materials" (page 9)
See "Friction Factors" (page 13)

b - European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.

- EU compliant with Restriction: Do not use in direct contact with fatty foods.

Mold to Width Oval Friction Top

	in	mm					
Pitch	1.00 25.4						
Molded Width	6 152						
Open Area	0%						
Hinge Style	Closed						
Drive Method	Center/hinge-driven						

Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Fully flush edges with Slidelox® rod retention feature. Slidelox is available in polypropylene or acetal.
- Uses headless rods.
- Robust design offers excellent belt and sprocket durability, especially in tough, material handling applications.
- Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and changeovers. The Series 1400 sprockets are all plastic.
- Available in grey PP with black rubber.
- Rubber indent is 1.0 in (25.4 mm).
- If a center-drive setup is used, it may be necessary to place collars to laterally retain the belt at the backbend roller before the drive.
- Temperature, environmental conditions, and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts.
- Up to three sprockets can be placed on the 6.0 in (152 mm) mold to width belt.
- Width tolerances for the Series 1400 Mold To Width belts are +0.000/-0.020 in (+0.000/-0.500 mm).
- Series 1400 Mold To Width belts are boxed in 10 ft. (3.05 m) increments.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

Belt Data											
Base Belt Material	Base/Friction Color	Standard Rod Material	BS	Belt Strength	Temperati (contir	ure Range nuous)	W	Belt Weight	Friction Top Hardness	Agency Acc	eptability
		Ø 0.24 in (6.1 mm)	lb	kg	°F	°C	lb/ft	kg/m		FDA (USA)	EU MC ^b
Polypropylene	Grey/Black	Nylon	800	386	34 to 150	1 to 66	1.15	1.71	55 Shore A	а	
· Eully consultant	-										

Fully compliant

a - FDA Compliant with Restriction: Do not use in direct contact with fatty foods.

b - European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.

		Roller	Тор™
	in	mm	20
Pitch	1.00	25.4	() ()
Minimum Width	5	127	
Width Increments	1.00	25.4	
Roller Diameter	0.70	17.8	
Roller Length	0.83	21.0	
Open Area	0%		10 -
Hinge Style	Clos]	
Drive Method	Center/hir]	

Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Allows low back pressure accumulation for gentle product handling.
- 144 rollers per square foot of belt provide greater product-to-roller contact.
- Standard roller indent is 0.75 in (19 mm)
- 1 in (25.4 mm) roller spacing.
- Available in white and grey acetal.
- Uses headless rods.
- Stainless steel roller axle pins for durability.
- Robust design offers excellent belt and sprocket durability.
- Slidelox® flush edges. Slidelox is available in polypropylene or acetal.
- Back-up load is 5-10% of product weight.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

	1 ALC	
	TIN IT	TT
	11 de	14
T	TT NIN	TIN
11-		
ITI		
	· · · · · · · ·	

Belt Data							
Belt Material Standard Rod Material Ø 0.24 in (6.1 mm)	Standard Rod Material Ø 0.24 in	BS	Belt Strength	Temperat (contin	ure Range nuous)	W	Belt Weight
	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²	
Acetal	Nylon	2500	3720	-50 to 200	-46 to 93	5.83	28.47

Belt Material Sta	Standard Rod Material Ø 0.24 in	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
HSEC Acetal	Nylon	1875	2790	-50 to 200	-46 to 93	2.78	13.57
Polypropylene	Nylon	1800	2678	34 to 220	1 to 104	2.32	11.33
	Em	amond Top					
---	---	--	--				
	in	mm	and the second sec				
Pitch	1.00	25.4					
Minimum Width	12.0	304.8					
Opening Sizes (approx.)	-	-					
Open Area	0	%					
Hinge Style	Clo	sed	a band				
Drive Method	Center/Hir	nge-Driven	and the second s				
Product	Notes						
 Minimum nominal alternating edg 4 in (102 mm). Smooth, closed surface with fully Uses headless rods. Robust design offers excellent b Most Series 1400 sprockets use not have to be removed for retro Series 1400 split sprockets are of teeth for excellent durability and Utilizes Slidelox® rod retention series 	ge indents of 3 i v flush edges. elt and sprocket the split design fits and change lesigned with th wear life. system.	n (76 mm) and durability. so shafts do overs. ick, "lug" style					
Additional Ir	formation		1.00" NOM. $ $ (25.4 mm) $ $ (25.4				
 See "Belt Selection Process" (pa See "Standard Belt Materials" (p See "Special Application Belt Ma See "Friction Factors" (page 13) 	ige 5) age 9) a <i>terials"</i> (page 9						

Belt Data									
Belt Material	Standard Rod Material Ø 0.24 in	BS	Belt Strength	Temperat (contin	ure Range nuous)	W	Belt Weight		
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²		
Polypropylene	Nylon	1800	2678	34 to 220	1 to 104	1.70	8.30		

203

• See *"Friction Factors"* (page 13)

	Uŕ	11		
-			-	-Ö

	Flat Top	o Easy F	Release PLUS
	in	mm	and a start of the start
Pitch	1.00	25.4	and the test of the second second
Minimum Width	5	127	and the second of the second sec
Width Increments	1.00	25.4	to the the teste to the
Opening Size (approximate)	-	-	
Open Area	00	6	
Hinge Style	Clos	sed	
Drive Method	Center/Hir		
Product	Notes		
 Contact Intralox for precise stock status before designi a belt. Easy Release PLUS material and exhibits minimal dimensi exposed to oil and heat. Features a smooth, closed statistic Uses headless rods. Robust design provides exce durability, especially in tough applications. Series 1400 sprockets featur excellent durability and wear Series 1400 split sprockets e changeovers without shaft re Utilizes Slidelox® rod retention is polypropylene. 	belt measure ing equipment I resists rubber onal expansion urface with fully ellent belt and s material handl e thick, lug-styl life. nable easy retr moval. on system. Slid	adhesion adhesion when flush edges. procket ing e teeth for ofits and elox material	
Additional I	nformatio	on	1.00" NOM. 1 (25,4 mm) (25,4 mm) (25,4 mm) (25,4 mm)
 See "Belt Selection Process" See "Standard Belt Materials See "Special Application Belt 	' (page 5) " (page 9) t <i>Materials"</i> (pa		

Belt Data									
Belt Material	Standard Rod Material Ø 0.24 in	BS Belt Strength		Temperature Range (continuous)		W	Belt Weight		
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²		
Easy Release PLUS	Orange Polypropylene (non-FDA)	1600	2380	34 to 220	1 to 104	2.00	9.78		

Flat Top	Easy Re	lease 7	Fraceab
	in	mm	111
Pitch	1.00	25.4	
Minimum Width	5	127	e 30 30 30 .
Width Increments	1.00	25.4	
Opening Size (approximate)	-	-	
Open Area	00		
Hinge Style	Clos	en al	
Drive Method	Center/Hir		
Product	Notes		

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth, closed surface with fully flush edges.
- Uses headless rods.
- Robust design offers excellent belt and sprocket durability, especially in tough glass applications.
- Most Series 1400 sprockets use the split design so shafts do not have to be removed for retrofits and changeovers. The Series 1400 sprockets are all plastic.
- The Series 1400 split sprockets are designed with thick, "lug" style teeth for excellent durability and wear life.
- Utilizes Slidelox® rod retention system. The Slidelox® for this product are molded with the detectable polypropylene material.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

Belt Data									
Belt Material	Standard Rod Material Ø 0.24 in	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight		
	(6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²		
Easy Release Traceable PP	Orange Polypropylene (non-FDA)	1200	1790	34 to 220	1 to 104	1.86	9.08		

ProTrax [™] with Tabs									
	in	mm							
Pitch	1.00	25.4	and a second sec						
Molded Widths	4.5	114.3							
Opening Size (approx.)	-	-	0.0						
Open Area	0	%							
Hinge Style	Clo	sed							
Drive Method	Center/Hir	ige-Driven	CARE AND A CONTRACT						
Product	Notes	-	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5						
 Contact Intralox for precise be status before designing equipries Powerful magnets are embedded. Tracking tabs prevent lateral move track style carryway with 1.75 in the standard configuration consists of S1400 Raised Flat Top modules maximize wear resistance. Ideal for incline, decline, vertical embedded on the synce of the syn	It measuremennet or ordering d in the belts. vement. Tabs fir (44.5 mm) space of magnetic more alternating eve switch, pan inder th belt only need er belt strand. blit design so shand changeover heless steel faste ed with thick, "he ife. etention. e installed so the ace of the conv formation ge 5) age 9) <i>terials</i> " (page 9	tts and stock ng a belt. into a straight ing. dules and y other row to exing, and ds one drive afts do not s. The S1400 eners. ug" style teeth at they run in ximum surface eyed product.							
		D - 11 D	-4-						

intralox.

Belt Data										
Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	BS	Straight Belt Strength	Temperature Range (continuous)		W	Belt Weight			
		lb	kg	°F	°C	lb/ft	kg/m			
Acetal	Nylon	550	250	-50 to 200	-46 to 93	1.46	2.18			
HHR Nylon	Nylon	550	250	-50 to 310	-46 to 154	1.296	1.95			

Sprocket and Support Quantity Reference										
Belt Wic	ith Range ^a	Minimum Number of	W	/earstrips						
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway ^c						
5	127	2	2	2						
6	152	2	2	2						
7	178	2	3	2						
8	203	2	3	2						
10	254	2	3	2						
12	305	3	3	2						
14	356	3	4	3						
16	406	3	4	3						
18	457	3	4	3						
20	508	5	5	3						
24	610	5	5	3						
30	762	5	6	4						
32	813	7	7	4						
36	914	7	7	4						
42	1067	7	8	5						
48	1219	9	9	5						
54	1372	9	10	6						
60	1524	11	11	6						
72	1829	12	13	7						
84	2134	15	15	8						
96	2438	17	17	9						
For Other Widths, Use Odd Number of Sprockets ^d at Maximum 6 in. (152 mm) ♀ Spacing		dd Number of Sprockets ^d at 52 mm)	Maximum 6 in. (152 mm)	Maximum 12 in. (305 mm)						

a. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 1.00 in. (25.4 mm) increments beginning with minimum width of 5 in. (127 mm). If the actual width is critical, consult Customer Service.
 b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.

c. Caution when using Friction Top. Contact Intralox Customer Service for friction top applications.

d. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 410 for lock down location. For Flush Grid, see Locked Sprocket Location chart in the Installation Instruction Guidelines or call Customer Service for lock down location.

Note: Magnet force shown is typical for an aluminized steel product with a flat surface and maximum surface area contact.

Results may vary based on material and surface texture.

	Plastic Sprocket ^a											
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Available Bore Sizes			S		
Teeth (Chordal	Pitch Dia in	Pitch	Outer	Outer	Outer Dia.	Hub Width	Hub Width	U.S. Sizes Metric Sizes		: Sizes		
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in	Square in	Round mm	Square mm		
12 (3.41%)	3.9	99	3.9	99	1.5	38	-	1.5	-	40		
15 (2.19%)	4.9	124	4.9	124	1.5	38		2.5		60		
18 (1.52%)	5.7	145	5.8	148	1.5	38	2	2.5	30, 40, 50	60		
24 (0.86%)	7.7	196	7.8	198	1.5	38		2.5		60		

a. Contact Customer Service for lead times.

Glass Filled Nylon Split Sprocket^a

No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom. Nom.	A	vailable E	Bore Sizes			
Teeth (Chordal	Pitch Dia	Pitch	Outer	Outer	Hub Width	Hub Width	U.S. Sizes		Metric Sizes		while while	
Action)	in	mm	in	mm	in	mm	Round in ^b	Square in	Round mm ^b	Square mm		
16 (1.92%)	5.1	130	5.2	132	2.0	51	1 to 2 in 1/16 increments	1.5	25 to 50 in 5 increments	40		
18 (1.52%)	5.7	145	5.8	148	2.0	51	1 to 2 in 1/16 increments	1.5 2.5	25 to 50 in 5 increments	40 60	The second	
21 (1.12%)	6.7	170	6.8	172	2.0	51	1 to 2 in 1/16 increments ^c	1.5 2.5	25 to 50 in 5 increments	40 60		

Contact Customer Service for lead times. a.

Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885. b.

c. Tight fit round bores are available in 1-1/4, 1-3/16, 1-1/2, and 1-7/16 in.

Maxi	Maximum Belt Rating for Glass Filled Nylon Round Bore Split Sprockets Based on Round Bore Size Range ^a													
No. of Teeth	Nom. Diar	Pitch neter	1 in - 1-	-3/16 in	1-1/4 1-3/8	⊧in - 8 in	1-7/1 1-3/	6 in - ⁄4 in	1-13/16	in - 2 in	25 mm - 3	35 mm	40 mm -	50 mm
	in	mm	lb/ft	kg/m	lb/ft	kg/m	lb/ft	kg/m	lb/ft	kg/m	lb/ft	kg/m	lb/ft	kg/m
16	5.1	130	1500	2232	1740	2589	2100	3125	2160	3214	1140	1697	2160	3214
18	5.7	145	1800	2679	2040	3036	2400	3572	3240	4822	1440	2143	2460	3661
21	6.7	170	1350	2009	1650	2455	2100	3125	3000	4464	1050	1563	2400	3572

a. The belt rating based on round bore sprocket size is used to determine sprocket spacing as a function of belt strength utilized. It may also be used for all other calculations. However, if the rating for the belt material and belt style is lower then the belt rating based on the round bore sprocket size, then the lower rating should be used for all calculations other than sprocket spacing.

						I	Nylon FD	A Spli	t Sprocl	ket ^a	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E			
Teeth (Chordal	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S. Si	zes	Metric S	Sizes	
Action)	in	mm	in	mm	in	mm	Round in ^b	Square in	Round mm ^b	Square mm	12.
12 (3.41%)	3.9	99	3.9	99	0.75	19	1.25	1.5			
16 (1.92%)	5.1	130	5.2	132	1.5	38	1.25 1.5	1.5	30	40	No.
18 (1.52%)	5.7	145	5.8	148	1.5	38	1.25	1.5	25 30	40	
									40		

a. Contact Customer Service for lead times.

b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

				Endu	ralox	Polyp	ropylei	ne Con	nposit	e Split
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	Available E	Bore Size	S
Teeth (Chordal	Pitch Dia in	Pitch Dia	Outer Dia in	Outer Dia	Hub Width	Hub Width	U.S.	Sizes	Metric	: Sizes
Action)		mm	Dia. III	mm	in	mm	Round in ^b	Square in	Round mm ^b	Square mm
16 (1.92%)	5.1	130	5.2	132	2.0	51		1.5		40
18	5.7	145	5.8	148	2.0	51		1.5		40
(1.52%)								2.5		60
21	6.7	170	6.8	172	2.0	51		1.5		40
(1.12%)								2.5		
31 (0.51%)	9.9	251	10.1	257	2.0	51		3.5		

a. Contact Customer Service for lead times.

b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

	Polyurethane Composite Split Sprocket ^a										
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	F	vailable E	3ore Size	s	
Teeth (Chordal	Pitch Dia in	Pitch Dia	Outer Dia in	Outer Dia	Hub Width	Hub Width	Hub Width U.S. Sizes		Metric Sizes		
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in	Square in	Round mm	Square mm	
31	9.9	251	10.1	257	1.50	38		3.5	([i	
(0.51%)					1.67	44		2.5 ^b			

a. Contact Customer Service for lead times.b. The 2.5" square bore is created by using a bore adapter in the 3.5" square bore sprocket.

S1400 Flat Top Base Flights (Streamline)

Available Flight Height							
in mm							
0.43	11						

Available Materials

11	Easy Release Traceable Polypropylene

Note: The minimum indent is a function of belt width. Contact Intralox Customer Service for valid indent increments.

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: Flight is smooth (streamline) on both sides.

Self-Clearing Finger Transfer Plates^a

Availabl	e Width	Number of	Available Materials
in	mm	Fingers	
6	152	18	Glass-Filled Thermoplastic

Note: The Self-Clearing Finger Transfer System consists of a finger transfer plate and a transfer edge belt that are designed to work together. This system eliminates the need for a sweeper bar, a pusher arm, or wide transfer plates. Transfers are smooth and 100% self-clearing, making right angle transfers possible for all container types. The Self-Clearing Finger Transfer System is ideal for warmer/cooler applications with frequent product changeovers and is compatible with any series and style of Intralox belt on the discharge and infeed conveyors. This system is bi-directional allowing the same transfer belt to be used for both left-hand and right-hand transfers.

Note: Self-Clearing Finger Transfer System is capable of transferring product to and from Intralox Series 400, Series 1200, and Series 1900 Raised Rib belts.

Note: Smooth, flat top surface provides excellent lateral movement of containers.

Note: Robust design for durability in tough glass applications.

Note: Finger Transfer Plates are easily installed and secured to mounting plates of any thickness with stainless steel bolts and oval washers that allow movement with the belt's expansion and contraction.

Note: Stainless steel hardware is sold separately.

Note: Self-Clearing Transfer Edge belt is molded with robust tracking tabs for belt support in heavy side-loading conditions. It has fully flush edges, headed rod retention system, and nylon rods for superior wear resistance.

a. Licensed under Rexnord U.S. Patent Nos. 7,314,130 and 7,448,490

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

SERIES 1400

Sprocket Description С Е Α В **Pitch Diameter** Range (Bottom to Top) No. Teeth in. in. mm in. mm mm in. in. mm mm SERIES 1400 FLAT TOP, FLUSH GRID, EMBEDDED DIAMOND TOP 3.9 99 12 1.62-1.68 41-43 1.80 46 3.86 98 2.24 57 4.9 124 15 2.10-2.15 53-55 2.06 52 4.81 122 2.72 69 130 16 2.26-2.32 57-59 2.11 54 5.13 130 2.88 5.1 73 5.7 145 18 2.59-2.63 2.22 56 5.76 146 3.19 81 66-67 6.7 170 21 3.07-3.10 78-79 2.44 62 6.71 170 3.75 95 7.7 196 24 3.55-3.58 90-91 2.64 67 7.66 195 4.14 105 9.9 251 31 4.67 119 3.07 78 9.88 251 5.25 133 SERIES 1400 FLAT FRICTION TOP, SQUARE FRICTION TOP, OVAL FRICTION TOP 3.9 99 12 1.62-1.68 41-43 1.80 46 4.06 103 2.44 62 124 53-55 127 2.92 4.9 15 2.10-2.15 2.06 52 5.01 74 5.1 130 16 2.11 54 5.33 135 3.08 2.26-2.31 57-59 78 5.7 147 2.22 56 3.39 18 2.59-2.63 66-67 5.96 151 86 6.7 170 21 3.07-3.10 78-79 2.44 62 6.91 176 3.87 98 7.7 3.55-3.58 67 7.86 200 4.34 196 24 90-91 2.64 110 31 5.45 138 9.9 251 4.67 119 3.07 78 10.08 256 SERIES 1400 ROLLER TOP 3.9 99 12 1.62-1.68 41-43 1.80 46 4.66 118 3.04 77 4.9 124 15 2.10-2.15 53-55 2.06 52 5.61 142 3.52 89 5.1 130 16 2.26-2.31 57-59 2.11 54 5.93 151 3.68 93 5.7 145 18 2.59-2.63 66-67 2.22 56 6.56 167 3.99 101 6.7 170 21 3.07-3.10 78-79 2.44 62 7.51 191 4.47 113

Sprocket Description		А	В		С		E			
Pitch D	Diameter	No. Tooth	Range (Bottor	in	mm	in	mm	in	mm	
in.	mm	NO. TEEIN	in.	mm						
7.7	196	24	3.55-3.58	90-91	2.64	67	8.46	215	4.94	125
9.9	251	31	4.67	119	3.07	78	10.68	271	6.05	154
	SERIES 1400 NON SKID, PROTRAX									
3.9	99	12	1.62-1.68	41-43	1.80	46	3.91	99	2.29	58
4.9	124	15	2.05-2.10	52-53	2.06	52	4.86	123	2.77	70
5.1	130	16	2.26-2.31	57-59	2.11	54	5.18	132	2.93	74
5.7	145	18	2.59-2.63	66-67	2.22	56	5.81	148	3.24	82
6.7	170	21	3.07-3.10	78-79	2.44	62	6.76	172	3.72	94
7.7	196	24	3.55-3.58	90-91	2.64	67	7.71	196	4.19	106
9.9	251	31	4.67	119	3.07	78	9.93	252	5.30	135

Dead Plate Gap

SECTION 2

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Descripti	Ga	Gap			
Pitch D	liameter	No. Tooth	in	mm		
in.	mm	No. reem				
3.9	99	12	0.066	1.7		
4.9	124	15	0.053	1.3		
5.1	130	16	0.050	1.3		
5.7	145	18	0.044	1.1		
6.7	170	21	0.038	1.0		
7.7	196	24	0.033	0.8		
9.9	251	31	0.025	0.6		

213

SECTION 2

1500

		Flush	Grid
	in	mm	and a support of the second second
Pitch	0.50	12.7	11111111111222 TANK
Minimum Width	8	203	and the second second
Width Increments	0.50	12.7	
Opening Sizes (approximate)	0.87 × 0.30	22.1 × 7.6	Section and the
	0.66 × 0.30	16.8 × 7.6	and the state of the state
Open Area	48	%	Alter and a second second
Hinge Style	Ор	en	and the second second
Drive Method	Hinge-	driven	and the first
Product	Notes		
 stock status before designing a belt. Designed for a 0.5 in (12.7 m) Smooth upper surface with full Uses headless rods. 0.140 in (3.6 mm) diameter rode The detectable material has State ASTM_D257 of 545 Ohms per surface 	m) nosebar. Ily flush edges ods. Surface Resist er square.	vity per	
Additional Ir	nformation	→ A	
 See "Belt Selection Process" See "Standard Belt Materials" See "Special Application Belt See "Friction Factors" (page 7) 	(page 5) " (page 9) <i>Materials"</i> (pa 13)	0.125" 0.50" NOM. 0.50" NOM. 0.50" NOM. (12.7 mm) (12.7	

Belt Data								
Belt Material	Standard Rod Material Ø 0.140 in	BS	Belt Strength	Temperat (contii	ure Range nuous)	W	Belt Weight	
	(3.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²	
Polypropylene	Polypropylene	125	186	34 to 220	1 to 104	0.44	2.12	
Polypropylene	Acetal	150	223	34 to 200	1 to 93	0.51	2.40	
HR Nylon ^a	Nylon	175	260	-50 to 240	-46 to 116	0.58	2.83	
HHR Nylon	HHR Nylon	175	260	-50 to 310	-46 to 154	0.58	2.83	
Acetal	Acetal	240	357	-50 to 200	-46 to 93	0.73	3.56	
Detectable Acetal	Acetal	200	298	-50 to 200	-46 to 93	0.69	3.35	
Detectable Polypropylene A22	Acetal	80	119	0 to 150	-18 to 66	0.57	2.78	
X-Ray Detectable Acetalb	Acetal	240	357	-50 to 200	-46 to 93	0.78	3.66	

a. This product may not be used for food contact articles that will come in contact with food containing alcohol.b. Designed specifically to be detected by x-ray machines.

ſ

F	lush Gri	d with C	Contained Edge
	in	mm	
Pitch	0.50	12.7	
Minimum Width	8	203	
Width Increments	2.0	50.8	
Minimum Opening Size (approx.)	0.87 × 0.30	22.1 × 7.6	
Maximum Opening Size (approx.)	0.66 × 0.30	16.8 × 7.6	
Open Area	48	%	
Hinge Style	Ор	en	and the second
Drive Method	Hinge-	driven	a State
Product	Notes		
 Always check with Custome width measurement and sto designing a conveyor or or Available in 2" increments. Designed for a 0.5 in (12.7 m Smooth upper surface with fue Uses headless rods. 0.140 in (3.6 mm) diameter ro Recessed rod retention featu containment. 	er Service for ock status bef dering a belt. m) nosebar. Illy flush edges ods. re provides su	precise belt fore	
Additional Ir	nformatio	$0.125^{"}$ $= 0.50^{"}$ NOM. $= 0.127^{"}$ mm) $= (12.7 \text{ mm})$	
 See "Belt Selection Process" See "Standard Belt Materials See "Special Application Belt See "Friction Factors" (page 1) 	(page 5) " (page 9) <i>Materials"</i> (pa 13)	ge 9)	(6.4 mm)

Belt Data										
Belt Material	Standard Rod Material Ø 0.180 in	BS	Belt Strength	Temperatu (contir	ure Range nuous)	W	Belt Weight			
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²			
HR Nylon ^a	Nylon	175	260	-50 to 240	-46 to 116	0.58	2.83			

a. This product may not be used for food contact articles that will come in contact with food containing alcohol.

		Sprocket a	and Support Quantity Reference	e
Belt Wid	Ith Range ^a	Minimum Number of Sprockets	٧	Vearstrips
in.	mm	Per Shaft ^o	Carryway	Returnway
8	203	3	3	2
10	254	3	3	2
12	305	3	3	2
14	356	3	4	3
16	406	5	4	3
18	457	5	4	3
20	508	5	5	3
22	559	5	5	3
24	610	7	5	3
26	660	7	6	4
28	711	7	6	4
30	762	7	6	4
32	813	9	7	4
34	864	9	7	4
36	914	9	7	4
38	965	9	8	5
40	1016	11	8	5
42	1067	11	8	5
44	1118	11	9	5
46	1168	11	9	5
48	1219	13	9	5
50	1270	13	10	6
52	1321	13	10	6
54	1372	13	10	6
56	1422	15	11	6
58	1473	15	11	6
60	1524	15	11	6
62	1575	15	12	7
64	1626	17	12	7
For Other Wid	ths, Use Odd Num (102 mm	nber of Sprockets ^c at Maximum 4 in.) & Spacing	Maximum 6 in. (152 mm)	Maximum 12 in. (305 mm) & Spacing

Belts are available in 0.50 in. (12.7 mm) increments beginning with 8 in. (203 mm). If the actual width is critical, consult Customer Service. a.

b.

These are the minimum number of sprockets. Additional sprokets may be required for heavily loaded applications. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Locked Sprocket Location chart in the c. Installation Instruction Guidelines or call Customer Service for lock down location.

intralox

							Molde	d Spro	cket ^a		
No. of Teeth	Nom. Pitch	Nom. Pitch	Nom. Outer	Nom. Outer	Nom. Hub	Nom. Hub	A	Available E	Bore Size	s	ANALA.
(Chordal Action)	Dia. in	Dia. mm	Dia. in	Dia. mm	Width	Width mm	U.S. Round in ^b	Sizes Square in	Round mm ^b	Sizes Square mm	
10 (4.89%)	1.6	41	1.8	46	0.65	17		5/8			
12 (3.41%)	1.9	48	2.1	53	0.65	17	1	1.0	25		
14 (2.51%)	2.3	58	2.4	61	0.75	19	3/4, 1, 1-3/16, 1-1/4	1.0	25		
17 (1.70%)	2.7	69	2.9	73	0.75	19	3/4, 1, 1-3/16, 1-1/4, 1-3/8		25		
19 (1.36%)	3.1	79	3.2	82	0.75	19	1, 1-3/8				
24 (0.86%)	3.8	97	4.0	101	0.75	19	1	1.5	25	40	
36 (0.38%)	5.7	145	5.9	150	0.75	19	1	1.5		40	

a. Contact Customer Service for lead times.

b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

	Nylon FDA Split Sprocket ^a										
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	Available E	Bore Size	S	- The State of the
Teeth (Chordol	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.	Sizes	Metric	: Sizes	- Aller - Aller
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in ^b	Square in	Round mm ^b	Square mm	3
24 (0.86%)	3.8	97	4.0	101	1.5	38				40	
36 (0.38%)	5.7	145	5.9	150	1.5	38				40	and the second

a. Contact Customer Service for lead times.

b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

		Flush Grid Base Fligh	ts (Streamline)
Available F	light Height	Available Materials	
in	mm		
1	25	Acetal, HR Nylon	
Note: Flights ca in (13 mm). Note: Each fligh integral part. No Note: Flush Gric Note: The minin (76 mm) to 3.75	n be cut down to at rises out of the fasteners are red d flight is smooth num indent is a fu in (95 mm).	custom heights with a minimum height of 0.25 center of its supporting module, molded as an quired. (Streamline) on both sides. Inction of belt width and ranges from 3 in	

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

SERIES 1500

Sprocket Description			А	В		С		E			
Pitch D	Diameter	No. Tooth	Range (Botto	m to Top)		mm	in	mm	in	mm	
in.	mm	NO. Teeth	in.	mm	· · · ·						
	SERIES 1500 FLUSH GRID, FLUSH GRID WITH CONTAINED EDGE										
1.6	41	10	0.64-0.68	16-17	1.13	29	1.62	41	1.00	25	
1.9	48	12	0.81-0.84	21	1.24	31	1.93	49	1.15	29	
2.3	58	14	0.97-1.00	25	1.34	34	2.25	57	1.31	33	
2.7	69	17	1.21-1.24	31	1.49	38	2.72	69	1.55	39	
3.1	79	19	1.37-1.39	35	1.59	40	3.04	77	1.71	43	
3.8	97	24	1.77-1.79	45	1.76	45	3.83	97	2.10	53	
5.7	145	36	2.73-2.74	69-70	2.71	55	5.74	146	3.06	78	

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Description	on	Gap				
Pitch D	iameter	No. Teeth	in	mm			
in.	mm						
1.6	41	10	0.040	1.0			
1.9	48	12	0.033	0.8			
2.3	58	14	0.028	0.7			
2.7	69	17	0.023	0.6			
3.1	79	19	0.021	0.5			
3.8	97	24	0.017	0.4			
5.7	145	36	0.011	0.3			

	Оре	en Hinge	e Flat	Тор									
	in	mm		5	3	i.	-		5		"		1
Pitch (nominal)	1.00	25.4	- Mar	in		-	2	5	1	1	· .		
Minimum Width	5	127			St.	4	AR	ŝ.	1	1			
Width Increments	0.50	12.7			1		-	12	?'				
Opening Size (approx.)	—	_		39	SIL	. 6		1	٤.,				
Open Area	00	%	6	CT 2	1 3			12					
Hinge Style	Ор	en			1º	-	A.	4					
Drive Method	Center	-driven				-		A. A.					
Product Notes				nıt	пл	111	1,7	17	л.	Л	TU.	11	11
 Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt. Smooth, closed upper surface with fully flush edges and recessed rods. Uses headless rods. 				лл лл	л л п л п п	ים ים ים	תר תר	л. Л.				נר נר נר	11
 Cam-link designed hinges - e area as belt goes around the Intralox feature allows unsurp this area. Fully sculpted and radius corr 	sprocket. This bassed cleanin	exclusive g access to	ллл	лл	лл	п	пл	n.	nı	nu	u	17	11
 Fully sculpted and radius corners - no pockets or sharp corners to catch and hold debris. Like Series 800 and Series 1800, the drive bar on the underside of Series 1600 Open Hinge Flat Top channels water and debris to the outside of the belt for easier, faster cleanup. The drive bar's effectiveness has been proven both in-house and in field tests. No-Cling flights are available. Standard height is 4" (102 mm) or they can be cut down to custom heights. 			ת תו ת תו	пл	лл	η. Π	תו	ιh Π	กม		U U	15	11
Additional I	nformati	on] !				-					-	
See "Belt Selection Process" See "Standard Belt Materials"	(page 5) " (page 9)		0.20" (5.1 mm	_(\sim	\frown	Þ	\succ	\int	X	P)	.40"	

- See "Standard Belt Materials" (page 9)
 See "Special Application Belt Materials" (page 9)
 See "Friction Factors" (page 13)

	Belt Data										
Belt Material	Standard Rod Material Ø 0.18 in	BS	Belt Strength	Temperate (contir	ure Range nuous)	W	Belt Weight				
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²				
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	1.05	5.13				
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	1.10	5.37				
Acetal	Polypropylene	1400	2100	34 to 200	1 to 93	1.58	7.71				
Acetal	Polyethylene ^a	1000	1490	-50 to 150	-46 to 66	1.58	7.71				
Hi-Temp	Hi-Temp	1000	1488	70 to 400	21 to 204	1.54	7.52				
X-Ray Detectable Acetalb	Blue Polyethylene	1000	1490	-50 to 150	-46 to 66	1.915	9.35				

1.00" NOM. (25.4 mm)

a. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

b. Designed specifically to be detected by x-ray machines

(10.2 mm)

1.00" NOM. (25.4 mm)

220 SERIES 1	500
--------------	-----

Г

Mold to Width Open Hinge Flat Top										
	in	mm								
Pitch	1.00	25.4								
Molded Width	7.5	190.5	All and a second se							
Open Area	0	%								
Hinge Style	Op	pen								
Drive Method	Center	-Driven								
Product	Notes		and a state of the							
 Contact Intraiox for precise stock status before designi a belt. Tracking tabs provide lateral Uses headed rods. Series 1600 Mold to Width be (3.05 m) increments. The Series 1600 Mold to Wid with sprockets smaller than a (12 tooth) sprocket. Smooth, closed upper surfact recessed headed rods. 	tracking. elts are boxed th belt should 3.9 in (99 mn e with fully flue	in 10 ft. not be used n) diameter								
Additional I	nformati	on								
 See "Belt Selection Process" See "Standard Belt Materials See "Special Application Belt See "Friction Factors" (page) 	(page 5) " (page 9) <i>Materials</i> " (pa 13)	age 9)								
			0.20" (5.1 mm) (5.1 mm) (5.1 mm) (25.4 mm) (25.4 mm) (25.4 mm) (1.00" NOM. (25.4 mm) (1.00" NOM. (1.00" NOM.							
	Belt Data									

Belt Data										
Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)		Belt Strength	Temperatu (contin	ire Range iuous)	W	Belt Weight			
		lb	kg	°F	°C	lb/ft	kg/m			
Acetal	Polyethylene	625	283	-50 to 150	-46 to 66	1.02	1.52			

Nub Top[™]

	in	mm		
Pitch	1.00	25.4		
Minimum Width	5	127		
Width Increments	0.50	12.7		
Open Area	0%			
Product Contact Area	10%			
Hinge Style	Open			
Drive Method	Center-Driven			

Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- No-Cling flights are 4 in (102 mm) high and can be cut to any size. Molded as an integral part of the belt, the flights are available in polypropylene, polyethylene, and acetal.
- Belt has closed upper surface with fully flush edges.
- Uses headless rods.
- Recommended for products large enough to span the distance between the nubs [0.250 in (6.35 mm)].
- Standard flights available.
- Not recommended for back-up conditions. If values are required, contact Intralox Sales Engineering.
- Standard nub indent is 1.3 in (33.0 mm).

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

0.275" (7.0 mm) ↓	1.00" NOM. (25.4 mm) (5.2 mm) (5.2 mm)	1.00" NOM. (25.4 mm) (25.1 mm) (2.1 mm)	0.075" (1.9 mm)

Belt Data							
Belt Material	Standard Rod Material Ø 0.18 in	BS	Belt Strength	Temperate (contir	ure Range nuous)	W	Belt Weight
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	1.13	5.52
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	1.18	5.76
Acetal	Polypropylene	1400	2100	34 to 200	1 to 93	1.74	8.49
Acetal	Polyethylene ^a	1000	1490	-50 to 150	-46 to 66	1.74	8.49
X-Ray Detectable Acetal	X-Ray Detectable Acetal	1400	2083	-50 to 200	-46 to 93	2.01	9.81

a. Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

Ditch (nominal)			
Ditch (nominal)	IN	mm	
Fitch (nominal)	1.00	25.4	
Minimum Width	5	127	
Width Increments	0.50	12.7	and the second se
Opening Size (approx.)		_	surres of the second second
Open Area	00	6	Later and the second se
Hinge Style	Ор	en	
Drive Method	Center	-driven	
Product	Notes		arrantantar
 Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt. Closed upper surface with fully flush edges. Cam-link designed hinges - expose more hinge and rod area as belt goes around the sprocket. This exclusive Intralox feature allows unsurpassed cleaning access to this area. Uses headless rods. Fully sculpted and radius corners - no pockets or sharp corners to catch and hold debris. Like Series 800 and Series 1800, the drive bar on the underside of Series 1600 Open Hinge Mini Rib channels water and debris to the outside of the belt for easier, faster cleanup. The drive bar's effectiveness has been proven both in-house and in field tests. No-Cling flights are available. Standard height is 4 in (102 mm) or they can be cut down to custom heights. O.16 in (4 mm) Mini Rib on surface accommodates gradual inclines and declines. Not recommended for back-up conditions. Minimum nominal alternating edge indents of 1.5 in (38 mm) and 2 in (51 mm). Additional Information See "Belt Selection Process" (page 5) See "Special Application Belt Materials" (page 9) See "Friction Factors" (page 13)			

Belt Data							
Belt Material	Standard Rod Material Ø 0.18 in	BS	Belt Strength	Temperati (contir	ure Range nuous)	W	Belt Weight
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m ²
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	1.135	5.54
Acetal	Polypropylene	1400	2100	34 to 200	1 to 93	1.705	8.32

-	9	9
C	4	4
-		

		Mesh	Тор™
	in	mm	///////////////////////////////////////
Pitch	1.00	25.4	
Minimum Width	5	127	- Aller
Width Increments	0.50	12.7	and the second second
Min. Opening Size (approx.)	0.06 x 0.12	1.5 x 3.0	
Max. Opening Size (approx.)	0.06 x 0.20	1.5 x 5.1	Sup Star
Open Area	16%		and the second
Hinge Style	Ор	en	
Drive Method	Center	-driven	

Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Cam-link designed hinges expose more hinge and rod area as belt goes around the sprocket. This exclusive Intralox feature allows unsurpassed cleaning access to this area.
- Uses headless rods.
- Fully sculpted and radius corners no pockets or sharp corners to catch and hold debris.
- Like Series 800 and Series 1800, the drive bar on the underside of Series 1600 Mesh Top channels water and debris to the outside of the belt for easier, faster cleanup. The drive bar's effectiveness has been proven both inhouse and in field tests.
- No-Cling flights are available. Standard height is 4 in (102 mm) or they can be cut down to custom heights.
- Standard Mesh Top indent is 1.0 in (25.4 mm).

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

alalalalalalalalalala) eta helalalalalalalalala
alah alahishikikikikikikikikikikiki
Manana and a second sec
alalalalalalalalala jatalalalalalalalalalalala
alala alalalalalalalalalalalalalalalala
alalalalalalalalalala) dalalalalalalalalalala
date detected and detected at the first of the second second second second second second second second second s

Belt Data							
Belt Material	Standard Rod Material Ø 0.18 in	BS	Belt Strength	Temperati (contir	ure Range nuous)	W	Belt Weight
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Acetal	Polypropylene	1200	1780	34 to 200	1 to 93	1.40	6.84
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.94	4.59

		р Тор'™	
	in	mm	
Pitch	1.00	25.4	marray and the second
Minimum Width	5	127	
Width Increments	0.50	12.7	
Min. Opening Size (approx.)	0.06 x 0.12	1.5 x 3.0	and the second sec
Max. Opening Size (approx.)	0.06 x 0.20	1.5 x 5.1	
Open Area	16	%	ALLENDER TRACK
Hinge Style	Ор	en	
Drive Method	Center	-Driven	and a start of the second
Product	Notes		
 Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt. Fully sculpted and radius corner – no pockets or sharp corners to catch and hold debris. Uses headless rods. Like Series 800 and Series 1800, the drive bar on the underside of the S1600 Mesh Nub Top channels water and debris to the outside of the belt for easier, faster cleanup. The drive bar's effectiveness has been proven both in-house and in field tests. No Cling flights are available. Standard height is 4 in (102 mm) or they can be cut down to custom heights. Standard Mesh Nub Top indent is 1.0 in (25.4 mm). Additional Information See "Belt Selection Process" (page 5) See "Standard Belt Materials" (page 9) 			0.275" (7.0 mm) 0.275" (7.0 mm) 0.475" (12.1 mm) (12.1
 See "Special Application Belt Materials" (page 9) See "Friction Factors" (page 13) 			

intralox

Belt Data							
Belt Material	Standard Rod Material Ø 0.18 in	BS	Belt Strength	Temperat (contin	ure Range nuous)	W	Belt Weight
	(4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Acetal	Polypropylene	1200	1780	34 to 200	1 to 93	1.45	7.08
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.98	4.81

		Raised O	pen Grid
	in	mm	
Pitch	1.00	25.4	
Minimum Width	5	127	
Maximum Width	60	1524	
Width Increments	0.50	12.7	
Opening Size (approx.)	0.20 x 0.16	5.1 x 4.1	
Open Area	28	%	
Min. Open Area	n/	a	
Hinge Style	Ор	en	
Drive Method	Center	Driven	a a day a day
Product	Notes		
 Fully sculpted and radius corners - no pockets or sharp corners to catch and hold debris. Uses headless rods. Like Series 800 and Series 1800, the drive bar on the underside of Series 1600 Raised Open Grid channels water and debris to the outside of the belt for easier, faster cleanup. The drive bar's effectiveness has been proven both in-house and in field tests. Open area designed to limit water film formation and maximize water drainage. Standard Raised Open Grid indent is 1 in (25.4 mm). 			
Additional Information			
 See "Belt Selection Process" (page 5) See "Standard Belt Materials" (page 9) See "Special Application Belt Materials" (page 9) See "Friction Factors" (page 13) 			0.09" (2.2 mm) (7.4 mm) (7.4 mm) (1.00" (25.4 mm)

Belt Data											
Belt Material	Standard Rod Material Ø 0.18 in	BS	Belt Strength	Temperatu (contir	ure Range 1uous)	W	Belt Weight				
	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²					
Acetal	Polypropylene	800	1190	34 to 200	1 to 93	1.32	6.44				
Polypropylene	Polypropylene	400	595	34 to 220	1 to 104	0.89	4.35				
Polyethylene	Polyethylene	200	298	-50 to 150	-46 to 66	0.92	4.49				

	Sprocket and Support Quantity Reference											
Belt Wic	Ith Range ^a	Minimum Number of	v	Vearstrips								
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway								
5	127	2	2	2								
6	152	2	2	2								
7	178	2	3	2								
8	203	3	3	2								
9	229	3	3	2								
10	254	3	3	2								
12	305	3	3	2								
14	356	5	4	3								
15	381	5	4	3								
16	406	5	4	3								
18	457	5	4	3								
20	508	5	5	3								
24	610	7	5	3								
30	762	9	6	4								
32	813	9	7	4								
36	914	9	7	4								
42	1067	11	8	5								
48	1219	13	9	5								
54	1372	15	10	6								
60	1524	15	11	6								
72	1829	19	13	7								
84	2134	21	15	8								
96	2438	25	17	9								
120	3048	31	21	11								
144	3658	37	25	13								
For Other M	Widths, Use O laximum 4 in. (1	dd Number of Sprockets ^c at 02 mm) Ç Spacing	Maximum 6 in. (152 mm) Ç Spacing	Maximum 12 in. (305 mm) & Spacing								

Belts are available in 0.50 in. (12.7 mm) increments beginning with 5 in. (127 mm). If the actual width is critical, consult Customer Service. a.

b.

These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset c. chart on page 410 for lock down location.

227

						E	Z Clea	n™ Sp	rocke	t ^a	
No. of Teeth	Nom. Pitch	Nom. Pitch	Nom. Outer	Nom. Outer	Nom. Hub	Nom. Hub	U.S.	Available E Sizes	Bore Size Metric	s c Sizes	
(Chordal Action)	Dia. in	Dia. mm	Dia. in	Dia. mm	in	Width mm	Round in ^b	Square in	Round mm ^b	Square mm	
6 (13.40%)	2.0	51	1.8	46	1.0	25	1.0		25		
10 (4.89%)	3.2	81	3.2	81	1.0	25	1.0	1.5	25	40	
12 (3.41%)	3.9	99	3.8	97	1.0	25		1.5		40	
20 (1.23%)	6.4	163	6.4	163	1.0	25		1.5		40	

a. Contact Customer Service for lead times. When using polyurethane sprockets, the Belt Strength for belts rated over 500 lb/ft (744 kg/m) will be de-rated to 500 lb/ft (744 kg/m) and all other belts will maintain their published rating. The temperature range for Polyurethane sprockets is 0° F (-18 °C) to 120 °F (49 °C). Contact Customer Service for availability of Polyurethane sprockets.
 b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

						Angle	ed EZ (Clean™	' Spro	cket ^a	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	Bore Size	S	
Teeth (Chordol	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.	Sizes	Metric	Sizes	
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in	Square in	Round mm	Square mm	
12 (3.41%)	3.9	99	3.8	97	2.0	50.8		1.5		40	
16 (1.92%)	5.2	132	5.1	130	2.0	50.8		1.5		40	
20 (1.23%)	6.4	163	6.4	163	2.0	50.8		1.5		40	

a. Contact Customer Service for lead times.

					l	UHMW	/ Polye	ethylen	e Spro	ocket ^a	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	Available E	Bore Size	S	
Teeth (Chordal	Pitch Dia in	Pitch Dia	Outer Dia in	Outer Dia	Hub Width	Hub Width	U.S.	Sizes	Metric	: Sizes	
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in	Square in	Round mm	Square mm	(40NHM)
16 (1.92%)	5.3	135	5.1	130	1.0	25				40	

a. Contact Customer Service for lead times.

Open Hinge Flat Top Base Flight (No-Cling)

Available Materiala	Available Flight Height				
	in mm				
	102	4.0			
Polypropylene, Polyethylene, Acetal					

Note: Minimum indent is 1.0 in (25.4 mm)

Note: Flights can be cut down to custom heights with a minimum height of 0.25 in (13 mm). Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: The no-cling vertical ribs are on both sides of the flight.

Mesh Nub Top[™] Base Flight (No-Cling)

0:.....

Available Materials	light Height	Available F
	mm	in
	102	4.0
Acetal, Polyethylene		

Note: Minimum indent is 1.0 in (25.4 mm)

Note: Flights can be cut down to custom heights with a minimum height of 0.25 in (13 mm). Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: The no-cling vertical ribs are on both sides of the flight.

Cocceptore and

		Sidegi	uaras
Availat	ole Sizes	Available Meteriala	
in	mm	Available Materials	
2	51		
3	76	Delverendene	
		Polypropylene	
loto: The minin	num indent is 0.7 in ((Smm)	

e: The minimum indent is 0.7 in (18mm)

Note: The normal gap between the sideguards and the edge of a flight is 0.3 in (7.6 mm).

Note: When going around the 6 and 10 tooth sprocket, the sideguards will fan out, opening a gap at the top of the sideguard which may allow small products to fall out. The sideguards stay completely closed when going around the 12, 16, and 20 tooth sprockets.

Note: Standard sideguard orientation is angled inward toward the product (product friendly). If needed, sideguards can be angled outward toward the conveyor.

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

SERIES 1600

Complete descriptions of the dimensions are listed on page 423.

Spr	ocket Des	scription	А		E	3		C	I	E
Pitch D	Diameter	No Tooth	Range (Bottor	m to Top)	in	mm	in	mm	in	mm
in.	mm		in.	mm						
		SE	RIES 1600 OPEN	HINGE FLA	T TOP, I	MESH TO	OP			
2.0	51	6	0.67-0.80	17-20	1.10	28	2.00	51	1.26	32
3.2	81	10	1.34-1.42	34-36	1.56	40	3.24	82	1.88	48
3.9	99	12	1.67-1.73	42-44	1.70	43	3.86	98	2.19	56
5.2	132	16	2.31-2.36	59-60	1.99	51	5.13	130	2.83	72
6.4	163	20	2.96-3.00	75-76	2.25	57	6.39	162	3.46	88
			SERIES 1600 N	NUB TOP, ME	ESH NUE	В ТОР				
2.0	51	6	0.67-0.80	17-20	1.10	28	2.08	53	1.34	34
3.2	81	10	1.34-1.42	34-36	1.56	40	3.31	84	1.96	50
3.9	99	12	1.67-1.73	42-44	1.70	43	3.94	100	2.27	58
5.2	132	16	2.31-2.36	59-60	1.99	51	5.13	130	2.83	72
6.4	163	20	2.96-3.00	75-76	2.25	57	6.47	164	3.53	90
			SERIE	ES 1600 MIN	I RIB					
2.0	51	6	0.67-0.80	17-20	1.10	28	2.16	55	1.42	36
3.2	81	10	1.34-1.42	34-36	1.56	40	3.40	86	2.04	52
3.9	99	12	1.67-1.73	42-44	1.70	43	4.02	102	2.35	60
5.2	132	16	2.31-2.36	59-60	1.99	51	5.13	130	2.83	72
6.4	163	20	2.96-3.00	75-76	2.25	57	6.55	166	3.62	92

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Descriptio	Gap				
Pitch D	iameter	No. Tooth	in			
in.	mm	NO. Teeth				
2.0	51	6	0.134	3.4		
3.2	81	10	0.079	2.0		
3.9	99	12	0.066	1.7		
6.4	163	20	0.039	1.0		

	SeamFree	[™] Minimu	ım İ	Hing	e F	lat '	Тор)							
	in	mm					1		1			11	11	11	1'
Pitch	1.00	25.4									1	11	11	11	11
Minimum Width	4	102	1								1	11	11	11	1.
Width Increments	1.00	25.4			1	n m	(1			11	1	11	11	1	
Opening Sizes (approx.)	-	-				20	525	1	1	11,	11	11	11		
Open Area	00	%			-	23	1	4		1	11	1	1		
Hinge Style	Op	en		2	22	22	3	2		1		/			
Drive Method	Center	Driven		P. C.	44	12	2	a 3)	0	17	1				
Product	Notes					and a	- 0 -	St.	lance	aster !!					
 Contact Intralox for precise bestatus before designing equipes smooth, closed upper surface wells and status before designing equipes. Smooth, closed upper surface wells and status before designed hinges - experts the belt goes around the sprock feature allows unsurpassed cleater allows unsurpassed cleater allows unsurpassed cleater and hold debrise. Fully sculpted and radiused components to catch and hold debrise. The drive bar on the underside of the drive bar on the drive proven both in-house and in fiel. Designed for use with S1600 Arr compatible with standard S1600. Belts over 18 in (457 mm) are b row, but seams are minimized. 	elt measurement oment or orderin with fully flush edge ose more hinge a et. This exclusive aning access to the ners - no pockets of S1650 SeamF with the patent pro- ports to the outside e bar's effectiven d tests. ogled EZ Clean™ 0 EZ Clean sproc uilt with multiple	Its and stock og a belt. ges. nd rod area as a Intralox his area. for sharp ree Minimum ending flume of the belt for ess has been sprockets but kets as well. modules per													
Additional I	nformation		-1-						~					Ł	_FL1
 See "Belt Selection Process" (p. See "Standard Belt Materials" (p. See "Special Application Belt M See "Friction Factors" (page 13) 	age 5) bage 9) J <i>aterials"</i> (page 9)			0.20" (5.1 mr		(25.4	NOM.		<i>Y</i>	1.00" N (25.4 r	IOM.).40" .2 mm))

Belt Data											
Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	BS	Belt Strength	Temperat (contin	ure Range nuous)	W	Belt Weight				
		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²				
Acetal	Acetal	350	520	-50 to 200	-46 to 93	1.47	7.18				
Acetal	Polypropylene	325	480	34 to 200	1 to 93	1.40	6.84				
Acetal	Polyethylene	225	330	-50 to 150	-46 to 66	1.40	6.83				
Polypropylene	Polypropylene	225	330	34 to 220	1 to 104	0.91	4.44				
X-Ray Detectable Acetal	Acetal	350	521	-50 to 200	-46 to 93	1.74	8.50				

		Sprocket a	and Support Quantity Refere	nce
Belt Wic	Ith Range ^a	Minimum Number of	W	earstrips
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway
4	102	2	2	2
5	127	2	2	2
6	152	2	2	2
7	178	2	3	2
8	203	3	3	2
9	229	3	3	2
10	254	3	3	2
12	305	3	3	2
14	356	5	4	3
15	381	5	4	3
16	406	5	4	3
18	457	5	4	3
20	508	5	5	3
24	610	7	5	3
30	762	9	6	4
32	813	9	7	4
36	914	9	7	4
42	1067	11	8	5
48	1219	13	9	5
54	1372	15	10	6
60	1524	15	11	6
72	1829	19	13	7
84	2134	21	15	8
96	2438	25	17	9
120	3048	31	21	11
144	3658	37	25	13
For Other	Widths, Use O laximum 4 in. (1	dd Number of Sprockets ^c at 02 mm) Ç Spacing	Maximum 6 in. (152 mm) & Spacing	Maximum 12 in. (305 mm) & Spa

Belts are available in 1.0 in. (25.4 mm) increments beginning with 4 in. (101.6 mm). If the actual width is critical, consult Customer Service. a.

These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications. b. c.

The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only.

SERIES 1650

233

						l		an əpr	ocket	A
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	ŀ	Available E	Bore Size	s
Teeth (Chordal	Pitch	Pitch	Outer	Outer	Hub Width	Hub Width	U.S.	Sizes	Metric	c Sizes
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in ^b	Square in	Round mm ^b	Square mm
6 (13.40%)	2.0	51	1.8	46	1.0	25	1.0		25	
10 (4.89%)	3.2	81	3.2	81	1.0	25	1.0	1.5	25	40
12 (3.41%)	3.9	99	3.8	97	1.0	25		1.5		40
20	6.4	163	6.4	163	1.0	25		1.5		40

. . .

.

a. Contact Customer Service for lead times. When using Polyurethane sprockets, the Belt Strength for belts rated over 500 lb/ft (744 kg/m) will be de-rated to 500 lb/ft (744 kg/m) and all other belts will maintain their published rating. The temperature range for Polyurethane sprockets is 0° F (-18 °C) to 120 °F (49 °C). Contact Customer Service for availability of Polyurethane sprockets.
 b. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

						Ang	ed EZ	Clean	Sproc	ket ^a
No. of Teeth	Nom. Pitch	Nom. Pitch	Nom. Outer	Nom. Outer	Nom. Hub Width	Nom. Hub Width	U.S.	Available E Sizes	Bore Size Metric	s c Sizes
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in	Square in	Round mm	Square mm
12 (3.41%)	3.9	99	3.8	97	2.0	50.8		1.5		40
16 (1.92%)	5.2	132	5.1	130	2.0	50.8		1.5		40
20 (1.23%)	6.4	163	6.4	163	2.0	50.8		1.5		40

a. Contact Customer Service for lead times.

	Mi	nimum Hinge Flat Top Base Flight (Dou	ıble No-Cling)
Available	Flight Height	Avgilable Matariala	
in	mm	- Available materials	
3.0	76.2		
		Polypropylene, Acetal	Ministration
		7	
Note: Flights car	n be cut down to a r	ninimum height of 0.5 in (12.7 mm)	and the second
Note: Flights of e	even inch widths cor	me standard with 1 in (25.4 mm) indents. Flights of odd inch	ward and
widths are availa	ble for retrofits and	require machined indents, which have contain marks and	
evidence of mod	lification.		
Note: Each flight	t rises out of the cer	iter of its supporting module, molded as an integral part. No	
fasteners are rec	juired.		

Note: The no-cling vertical ribs are on both sides of the flight.

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

Sprocket Description		А	В		С		E			
Pitch D	liameter	No Tooth	Range (Bottom to		in	mm	in	mm	in	mm
in.	mm	NO. Teeth	in.	mm						
SERIES 1650 SEAMFREE™ MINIMUM HINGE FLAT TOP										
2.0	51	6	0.67-0.80	17-20	1.10	28	2.00	51	1.26	32
3.2	81	10	1.34-1.42	34-36	1.56	40	3.24	82	1.88	48
3.9	99	12	1.67-1.73	42-44	1.70	43	3.86	98	2.19	56
5.2	132	16	2.31-2.36	59-60	1.99	51	5.13	130	2.83	72
6.4	163	20	2.96-3.00	75-76	2.25	57	6.40	163	3.46	88

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

1 - Top surface of dead plate

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Descriptie	on	Gap			
Pitch Diameter		No. Tooth	in			
in.	mm					
2.0	51	6	0.134	3.4		
3.2	81	10	0.079	2.0		
3.9	99	12	0.066	1.7		
6.4	163	20	0.039	1.0		

		Flush	Grid
	in	mm	
Pitch	1.50	38.1	
Minimum Width	5	127	
Width Increments	1.00	25.4	
Opening Sizes (approx.)	0.62 × 0.50	15.7 × 12.7	
	0.70 × 0.26	17.8 × 6.6	
Open Area	37	%	
Hinge Style	Clo	sed	
Drive Method	Center/Hir	nge-Driven	0.00.00
Produc	t Notes		
 stock status before design a belt. Fully flush edges with highly Slidelox® rod retention feat Uses headless rods. Robust design offers excell durability, especially in toug applications. Abrasion resistant system la conventional modular plasti Sprockets have large lug te Multi-rod hinge design signi shafting. Every row contains Abrasion resistant nylon us Ultra abrasion resistant poly Steel is preferred carryway Chevron pattern or flat cont recommended. Straight, pa be used. Do not use on pus 	ning equipment y visible, orange ure. ent belt and spro h material hand asts 2.5 to 3 time c belts. eth. ificantly reduces s two rectangula ed in modules a yurethane sproc material. inuous carryway rallel wearstrips	t or ordering acetal ocket ling s longer than cam ur rods. nd rods. kets. / should not	
Additional	Informatio	on	
 See "Belt Selection Process" (page 5) See "Standard Belt Materials" (page 9) See "Special Application Belt Materials" (page 9) See "Friction Factors" (page 13) 			(19.0 mm) (38.1 mm)
		Belt D	Data
Belt Material	Standard R	od Material	BS Belt Temperature Range W Belt

Belt Material	Standard Rod Material 0.25 x 0.17 in	BS	Belt Strength	Temperatu (contin	ure Range uous) ^a	W	Belt Weight				
	(6.4 × 4.3 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²				
AR Nylon	Nylon	1800	2678	-50 to 240	-46 to 116	2.21	10.78				
Detectable Nylon	Nylon	1500	2232	-50 to 180	-46 to 82	2.28	11.13				
Low Wear Plus	Nylon	500	744	0 to 120	-18 to 49	2.56	12.50				

a. Sprocket temperatures should be limited to -40 to 160 °F (-40 to 70 °C). Belt used in temperature range of 212 to 240 °F (100 to 116 °C) are not FDA-compliant.

SECTION 2

	Flu	sh Grid I	Nub Top™
	in	mm	
Pitch	1.50	38.1	
Minimum Width	16	406.4	A REAL PROPERTY AND A REAL
Width Increments	1.00	25.4	
Opening Sizes (approx.)	0.70 × 0.26	18 x 7	
Open Area	37	%	
Product Contact Area	89	%	Cases of Call
Hinge Style	Clo	sed	and the second second
Drive Method	Center/Hir	nge-Driven	AN BURNESS
Product	Notes		╺┶┙╼┶┙╼┖┚═┖┚═┖┚═┖
 Fully flush edges with highly v Slidelox® rod retention featur Uses headless rods. Robust design offers exceller durability, especially in tough applications. Abrasion resistant system las conventional modular plastic Sprockets have large lug teet Multi-rod hinge design signifie shafting. Every row contains Abrasion resistant nylon used Ultra abrasion resistant polyu Steel is preferred carryway m Chevron pattern or flat contin recommended. Do not use st Do not use on pusher convey Minimum nominal alternating (102 mm) and 6 in (152 mm). 	visible, orange re. In belt and spro- material hand ts 2.5 to 3 time belts. th. cantly reduces two rectangula d in modules an irethane split s naterial. uous carryway raight, parallel fors. edge indents of	acetal ocket ling s longer than cam ir rods. nd rods. prockets. wearstrips. of 4 in	
 See "Belt Selection Process" See "Standard Belt Materials See "Special Application Belt See "Friction Factors" (page 1) 	(page 5) " (page 9) ' <i>Materials</i> " (pa 13)	ge 9)	- 1.50" NOM (38.1 mm)

intralox

Belt Data										
Belt Material	Standard Rod Material 0.25 × 0.17 in	BS	Belt Strength	th (continuous) ^a			Belt Weight			
	(0.4 × 4.3 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²			
AR Nylon	Nylon	1800	2678	-50 to 240	-46 to 116	2.21	10.78			
Easy Release Traceable PP	Nylon	1500	2230	34 to 220	1 to 104	1.84	8.98			
Low Wear Plus	Low Wear Plus	500	744	0 to 120	-18 to 49	2.58	12.60			

a. Sprocket temperatures should be limited to -40 to 160 °F (-40 to 70 °C). Belt used in temperature range of -212 to 240 °F (100 to 116 °C) are not FDA-compliant.

	Tra	nsverse F	toller Top [™]
	in	mm	S. C.
Pitch	1.475	37.5	a fatal al al al al a la la la la la
Minimum Width	12	304.8	
Width Increments	2.00 ^a	50.8	
Min. Opening Size (approx.)	0.62 x 0.50	16 x 13	
Max. Opening Size (approx.)	0.70 x 0.26	18 x 7	
Open Area	26	%	
Hinge Style	Clos	sed	
Drive Method Center/Hinge-Driven			
Produc	t Notes		
 Robust design offers excellent especially in tough, material has Uses headless rods. Sprockets have large lug teeth Ultra abrasion resistant polyure Split sprockets are available. Roller axles are stainless steel performance. Roller diameter is 0.95 in (24.1) Roller length is 0.825 in (21 mr) Roller spacing is 1.0 in (25.4 mr) Minimum return roller diameter Must be assembled in 2-row in 	beit and sprocket andling application ethane sprockets. for durability and mm). m). is 6.0 in (152.4 m crements.	durability, s. long-lasting m).	
Additional	Information	1.875" (47.6 mm) 1.50" (38.1 mm)	
 See "Belt Selection Process" (µ See "Standard Belt Materials" See "Special Application Belt N See "Friction Factors" (page 13) 	bage 5) (page 9) <i>Materials"</i> (page 9) 3)	1.475" (37.5 mm) (37.5 mm) (37.5 mm) (37.5 mm) (37.5 mm)	

a. Available in width increments of 2 in (50.8 mm) except 14 in (356 mm) wide belt not available.

Belt Data										
Belt Material	Standard Rod Material Ø 0.312 in	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight			
	(7.9 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²			
Polypropylene	Nylon	2200	3270	34 to 200	1 to 93	4.70	22.96			

237

Sprocket and Support Quantity Reference Flush Grid and Flush Grid Nub Top $^{ extsf{TM}}$						
Belt Width Range ^a		Minimum Number of	Wearstrips			
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway		
5	127	2				
6	152	2				
7	178	3				
8	203	3		Straight, parallel wearstrips should not be used.		
9	229	3				
10	254	3	1			
12	305	3				
14	356	3				
15	381	3	1			
16	406	5				
18	457	5				
20	508	5	Straight, parallel wearstrips should not			
24	610	5	continuous carryway instead.	instead.		
30	762	7				
32	813	9				
36	914	11	1			
42	1067	13	1			
48	1219	15				
54	1372	17				
60	1524	19				
72	1829	23				
84	2134	27				
96	2438	31				
120	3048	39				
144	3658	47	1			
For Other Widths, Use Odd Number of Sprockets ^{cd} at Maximum 4 in. (102 mm) & Spacing			Maximum 6 in. (152 mm)	Maximum 12 in. (305 mm) & Spacing		

a. Belts are available in 1.00 in. (25.4 mm) increments beginning with 5 in. (127 mm). If the actual width is critical, consult Customer Service.
b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.
c. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 410 for lock down location.
d. For Drive shaft, use an odd number of sprockets at maximum of 3.00 in. (76.2 mm) center line spacing.

Sprocket and Support Quantity Reference Transverse Roller Top TM							
Belt Width Range ^a		Minimum Number of	Wearstrips				
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway			
5	127	2	2	2			
6	152	2	2	2			
7	178	3	2	2			
8	203	3	2	2			
9	229	3	3	2			
10	254	3	3	2			
12	305	3	3	2			
14	356	3	3	3			
15	381	3	3	3			
16	406	5	3	3			
18	457	5	3	3			
For Other Widths, Use Odd Number of Sprockets ^c at Maximum 4 in. (102 mm) & Spacing			Maximum 6 in. (152 mm)	Maximum 12 in. (305 mm) & Spacing			
2	3	99					
---	---	----					

	Spr	ocket and Support G	Quantity Reference Transve	erse Roller Top [™]
Belt Wic	lth Range ^a	Minimum Number of	W	/earstrips
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway
20	508	5	4	3
24	610	5	4	3
30	762	7	5	4
32	813	7	5	4
36	914	9	5	4
42	1067	9	6	5
48	1219	11	7	5
54	1372	11	7	6
60	1524	13	8	6
72	1829	15	9	7
84	2134	17	11	8
96	2438	21	12	9
120	3048	25	15	11
144	3658	29	17	13
For Other M	Widths, Use Oc laximum 4 in. (1	d Number of Sprockets ^c at 02 mm) Ç Spacing	Maximum 6 in. (152 mm)	Maximum 12 in. (305 mm) & Spacing

Belts are available in 1.00 in. (25.4 mm) increments beginning with 5 in. (127 mm). If the actual width is critical, consult Customer Service. a.

These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications. b.

The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset c. chart on page 410 for lock down location.

				Ultra	n Abra	sion F	Resista	nt Pol	yureth	nane S
No. of Teeth	Nom. Pitch	Nom. Pitch	Nom. Outer	Nom. Outer	Nom. Hub	Nom. Hub	A U.S.	Available E Sizes	Bore Size Metric	s c Sizes
(Chordai Action)	Dia. In	Dia. mm	Dia. In	mm	in	mm	Round in	Square in	Round mm	Square mm
12 (3.41%)	5.8	147	5.85	149	1.5	38		1.5		40
14 (2.51%)	6.7	170	6.80	173	1.5	38		1.5		40
16 (1.92%)	7.7	196	7.74	197	1.5	38		1.5 2.5		40 60
22 (1.02%)	10.5	267	10.59	269	1.5	38		2.5		

a. Contact Customer Service for lead times.

SECTION 2

			U	ltra A	brasi	on Res	sistant	: Polyu	rethar	ne Spli
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	Bore Size	s
Teeth (Chordal	Pitch Dia in	Pitch Dia	Outer Dia in	Outer Dia	Hub Width	Hub Width	U.S.	Sizes	Metric	: Sizes
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in	Square in	Round mm	Square mm
14	6.7	170	6.80	173	1.5	38		1.5		40
(2.51%)								2.5		60
16	7.7	196	7.74	197	1.5	38		1.5		40
(1.92%)								2.5		60
22	10.5	267	10.59	269	1.5	38		2.5		60
(1.02%)								3.5		

Streamline Flights

		Streamme i nymts	
Available F	light Height	Available Materiale	
in	mm		
4.0	102		
6.0	152	Nylon (AR) Detectable Nylon	
		200000000000000	2
Note: Minimu	m indent is 2.0	0 in (51 mm)	
Note: Flights	can be cut dov	vn to custom heights with a minimum height	
of 0.25 in (13	mm).		
Note: Flight is	s smooth (strea	amline) on both sides.	

Note: Each flight rises out of the center of its supporting module,

molded as an integral part. No fasteners are required.

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

SERIES 1700

Complete descriptions of the dimensions are listed on page 423.

Spr	ocket De	scription	A		E	3	0	2	E	Ξ
Pitch D	Diameter	No. Tooth	Range (Botto	m to Top)	in		in	100 100	in	
in.	mm	NO. Teeth	in.	mm						
			SERIES	1700 FLUS	H GRID					
5.8	147	12	2.36-2.46	60-62	2.42	61	5.67	144	3.27	83
6.7	170	14	2.85-2.93	72-74	2.63	67	6.61	168	3.74	95
7.7	196	16	3.33-3.40	85-86	2.81	71	7.56	192	4.22	107
10.5	267	22	4.78-4.83	121-123	3.30	84	10.41	264	5.64	143
			SERIES 1700	FLUSH GR		ГОР				
5.8	147	12	2.36-2.46	60-62	2.42	61	5.79	147	3.39	86
6.7	170	14	2.85-2.93	72-74	2.63	67	6.73	171	3.86	98
7.7	196	16	3.33-3.40	85-86	2.81	71	7.68	195	4.34	110
10.5	267	22	4.78-4.83	121-123	3.30	84	10.53	267	5.76	146
			SERIES 1700 TI	RANSVERSE	ROLLE	R TOP				
5.8	147	12	2.42-2.52	61-64	2.36	60	6.92	176	4.46	113
6.7	170	14	2.91-3.00	74-76	2.56	65	7.87	200	4.93	125
7.7	196	16	3.40-3.47	86-88	2.73	69	8.81	224	5.41	137
10.5	267	22	4.84-4.90	123-124	3.20	81	11.67	296	6.83	173

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Description	n	Ga	р
Pitch D	iameter	No. Tooth	in	
in.	mm	NO. Teeth		
5.8	147	12	0.099	2.5
6.7	170	14	0.085	2.2
7.7	196	16	0.074	1.9
10.5	267	22	0.054	1.4

		Flush	Grid
	in	mm	
Pitch	1.52	38.6	
Minimum Width	12	304.8	
Maximum Width	120	3048	
Width Increments	1.00	25.4	
Opening Sizes (approx.)	0.66 x 0.53	16.7 x 13.5	
Open Area	21	%	
Hinge Style	Clos	sed	
Drive Method	Center/Hir	ige-Driven	And a constant of the second s
Product	Notes		
 Fully flush edges with highly visit feature. Uses headless rods. Robust design offers excellent be especially in tough material hand. Semi-circle rod design significant elongation, delivering predictable planning in tough applications. Ultra abrasion resistant polyureth Sprockets have large lug teeth the engagement, extend sprocket life drive pockets. Large belt openings for high volue Stainless steel is the preferred cate of the continuou not use straight, parallel wearstric conveyors. For specific S1750 Design Guide Support Group. 	elt and sprocket lling applications tly reduces rod ve performance for nane sprockets. nat provide reliate e, and clear deb ume water flow a arryway materia s carryway reco ps. Do not use of elines, contact th	d retention durability, s. wear and pitch r maintenance ble ris from the and drainage. I. mmended. Do on pusher ne Technical	
Additional In See "Belt Selection Process" (pa See "Standard Belt Materials" (pa See "Special Application Belt Ma See "Friction Factors" (page 13) 	ge 5) age 9) Iterials" (page 9))	

	Belt Da	ata					
Belt Material	Standard Rod Material 0.25 x 0.17 in	BS	Belt Strength	Temperat (contir	ure Range nuous)	W	Belt Weight
	(6.4 x 4.3 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Low Wear Plus	Stainless Steel	1200	1790	0 to 120	-18 to 49	7.10	34.66
Low Moisture Abrasion Resistant	Stainless Steel	1800	2680	0 to 212	-18 to 100	6.73	32.86

		Sprocket and Su	pport Quantity Reference Flu	ısh Grid
Belt Wid	th Range ^a	Minimum Number of	Wea	arstrips
in	mm	Sprockets Per Shaft ^o	Carryway	Returnway
12-14	305-356	5	1 ,	
15-18	381-457	7	1	
20	508	9	1	
24	610	11	1	
30	762	13	1	
32	813	15	1	
36	914	17	1	
42	1067	19	Only use a chevron pattern or flat	Only use a chevron pattern or flat
48	1219	23	parallel wearstrips.	parallel wearstrips.
54	1372	25		
60	1524	29	1	
72	1829	35	1	
84	2134	41	1	
96	2438	47	1	
108	2743	53	1 '	
120	3038	59		
For Other	Widths, Use Od Maximum 2 in (5	d Number of Sprockets ^{cd} at ରୀ mm) ଢୁ Spacing		

a. Belts are available in 1.00 in (25.4 mm) increments beginning with 12 in (305 mm). If the actual width is critical, contact Customer Service.

b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.

c. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only.

d. For drive shaft, use an odd number of sprockets at maximum of 2.00 in (50.8 mm) centerline spacing.

				U	tra A	brasi	on Resis	tant P	olyureth	ane Sp	rocl	ket ^a			
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	Bore Sizes						Ī
Teeth (Chordal	Pitch Dia	Pitch Dia	Outer Dia	Outer Dia	Hub Width	Hub Width	U.S. Si	zes	Metric S	Sizes			2	1	
Action)	in	mm	in	mm	in	mm	Round in	Square in	Round mm	Square mm		2		K	
16 (1.92%)	7.8	198	7.9	201	1.5	38		2.5		60		4	-	-	
22 (1.02%)	10.6	269	10.9	277	1.5	38		2.5 3.5		60		~	2	~	

a. Contact Customer Service for lead times.

				Į	Ultra	Abra	sion Res	istant	Split Sp	rocke
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	Bore Sizes	
Teeth (Chordal	Pitch	Pitch	Outer	Outer	Hub Width	Hub Width	U.S. Si	zes	Metric S	izes
Action)	in	mm	in	mm	in	mm	Round in	Square in	Round mm	Square mm
14 (2.51%)	6.8	173	6.9	175	1.5	38		1.5 2.5		40 60
16 (1.92%)	7.8	198	7.9	201	1.5	38		1.5 2.5		40 60
22 (1.02%)	10.6	269	10.9	277	1.5	38		2.5 3.5		60

a. Contact Customer Service for lead times.

3-Piece Streamline Flights

Available Materials	light Height	Available F
	mm	in
	76	3.0
Low Wear Plus, Low Moisture Abrasion Resistant	102	4.0

Note: Flight consists of 3 pieces: the base module, the attachment, and the rod.

Note: Available with zero indent. The first available indent is 1.625 in (41 mm). Contact Intralox Customer Service for valid indent increments. **Note:** Flights can be cut as short as 1.5 in (38 mm) if necessary for a particular application. If a shorter flight is needed, the flight base module without a flight attachment functions as a 0.75 in (19 mm) raised link. Contact Intralox Customer Service for more information. **Note:** Flight is smooth (streamline) on both sides.

Urethane Wearstrip

Dimer	nsions	Available Colora
in	mm	Available Colors
0.50 x 2 x 216	13 x 51 x 5486	Blue

Note: Temperature range is 32°F (0°C) to 120°F (49°C). **Note:** Contact Intralox Customer Service for friction and belt strength analysis.

Note: intended for belting applications with all dry, aqueous, and solid fatty foods (not liquid oils).

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, implement dimensions "A", "B", "C" and "E" listed in the following table in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

Conveyor frame dimensions are established using the top of the roller as the top of the belt and the bottom of the module as the bottom of the belt. "B" dimension is based on a 0.5 in (12.7 mm) thick carryway.

Spr	ocket Des	scription	А	В		С		E				
Pitch Diameter		No. Tooth	Range (Bottor	in	mm	in		in				
in	mm	NO. Teetii	in	mm								
	FLUSH GRID											
6.8	173	14	2.72-2.81	69-71	2.83	72	6.81	173	4.06	103		
7.8	198	16	3.21-3.29	82-84	3.04	77	7.77	197	4.54	115		
10.6	269	22	4.67-4.73	119-120	3.68	93	10.65	271	5.98	152		

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The following table shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations, it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Description	Gap			
Pitch D	iameter	No. Tooth	in	122 122	
in	mm				
6.8	173	14	0.085	2.2	
7.8	198	16	0.075	1.9	
10.6	269	22	0.054	1.4	

		Flat	Тор
	in	mm	
Pitch	2.50	63.5	
Minimum Width	5	127	
Width Increments	1.00	25.4	
Opening Size (approximate)	-	-	
Open Area	0%	6	
Hinge Style	Op	en	
Drive Method	Center-	driven	1

Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth, closed upper surface with fully flush edges.
- Uses headless rods.
- Impact resistant belt designed for abusive applications.
- Easy retrofit from Series 800 without extensive conveyor frame changes for most meat industry applications since the A,B,C,E dimensions are within 1/4 in (6 mm) of Series 800.
- Cam-link designed hinges expose more hinge and rod area as belt goes around the sprocket. This exclusive Intralox feature allows unsurpassed cleaning access to this area.
- Like Series 800 and Series 1600, the drive bar on the underside of S1800 Flat Top channels water and debris to the outside of the belt for easier, faster cleanup. The drive bar's effectiveness has been proven both in-house and in field tests.

Additional Information

- See "Belt Selection Process" (page 5)
- See "Standard Belt Materials" (page 9)
- See "Special Application Belt Materials" (page 9)
- See "Friction Factors" (page 13)

Belt Data											
Belt Material	Standard Rod Material Ø 0.312 in	BS	Belt Strength	Temperature Range (continuous)		W	Belt Weight				
	(7.9 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²				
Polypropylene	Polypropylene	1200	1786	34 to 220	1 to 104	2.06	10.06				
Polyethylene	Polyethylene	700	1042	-50 to 150	-46 to 66	2.23	10.90				
Acetal	Polyethylene	1200	1786	-50 to 150	-46 to 66	3.36	16.40				
Acetal	Polypropylene	1500	2232	34 to 200	1 to 93	3.36	16.40				
X-Ray Detectable Acetal ^a	Polyethylene	1000	1490	-50 to 150	-46 to 66	3.77	18.41				

a. Designed specifically to be detected by x-ray machines.

MIR

• See *"Friction Factors"* (page 13)

Belt Data											
Belt Material	Standard Rod Material Ø 0.312 in	BS Belt Strength		Temperati (contir	ure Range nuous)	W	Belt Weight				
	(7.9 mm)	lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²				
Polypropylene	Polypropylene	800	1190	34 to 220	1 to 104	1.44	7.03				
UV Resistant PP	Acetal	1100	1640	34 to 200	1 to 93	1.55	7.56				
UV Resistant Acetal	Acetal	1500	2230	-50 to 200	-46 to 93	2.27	11.08				
Polyethylene	Polyethylene	400	595	-50 to 150	-46 to 66	1.50	7.32				
Nylon	Nylon	1000	1488	-50 to 240	-46 to 116	1.81	8.84				

	Sprocket and Support Quantity Reference										
Belt Wic	ith Range ^a	Minimum Number of	v	/earstrips							
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway							
5	127	1	2	2							
6	152	2	2	2							
7	178	2	2	2							
8	203	2	2	2							
9	229	2	2	2							
10	254	2	3	2							
12	305	3	3	2							
14	356	3	3	3							
15	381	3	3	3							
16	406	3	3	3							
18	457	3	3	3							
20	508	3	4	3							
24	610	5	4	3							
30	762	5	5	4							
32	813	5	5	4							
36	914	7	5	4							
42	1067	7	6	5							
48	1219	9	7	5							
54	1372	9	7	6							
60	1524	11	8	6							
72	1829	13	9	7							
84	2134	15	11	8							
96	2438	17	12	9							
For Other M	Widths, Use Oc laximum 6 in. (1	d Number of Sprockets ^c at 52 mm) Ç Spacing	Maximum 9 in. (229 mm)	Maximum 12 in. (305 mm) & Spacing							

a. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 1.00 in. (25.4 mm) increments beginning with 5.0 in. (127 mm). If the actual width is critical, consult Customer Service.

b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.

c. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 410 for lock down location.

EZ Clean Sprocket^a

No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	Bore Size	s
Teeth (Chordal	Pitch Dia in	Pitch	Outer Dia	Outer	Hub Width	Hub Width	U.S.	Sizes	Metric	Metric Sizes		
Action)	Dia. 11.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm		
6 (13.40%)	5.0	127	4.6	117	1.5	38		1.5		40		
8 (7.61%)	6.5	165	6.2	157	1.5	38		1.5		40		
10 (4.89%)	8.1	206	7.8	198	1.5	38		1.5		40		
13	10.5	267	10.3	262	1.5	38		1.5		40		
(2.91%)								2.5		60		

intralox

a. Contact Customer Service for lead times.

	Angled EZ Clean Sprocket ^a											
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	ŀ	Available E	Bore Size	S	14-	-
(Chordal	Dia in	Dia	Dia	Dia	Midth	Width	U.S.	Sizes	Metric	: Sizes		
Action)	Dia. III.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm	1	1
8 (7.61%)	6.5	165	6.2	157	2.0	50.8		1.5		40		

a. Contact Customer Service for lead times.

Impact Resistant Flights

Available F	light Height	Available Materials							
in.	mm	Available Materials							
4.0	102								
		Polypropylene, Polyetnylene, Acetal X-Ray Detectable Acetal							
Note: Flights can be cut down to custom heights with a minimum height of 0.25 in (13 mm). Note: Each flight rises out of the center of its supporting									
module, mo required.	lded as an int	egral part. No fasteners are							

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

SERIES 1800

Spr	ocket Des	scription	А		B (E			
Pitch D	Diameter	No. Tooth	. Teeth Range (Bottom to Top) in. mm		mm	in	mm	in	mm		
in.	mm	NO. TEEIN									
SERIES 1800 FLAT TOP, MESH TOP											
5.0	127	6	1.77-2.10	45-53	1.87	47	4.95	126	2.91	74	
6.5	165	8	2.62-2.87	66-73	2.23	57	6.48	165	3.68	93	
8.1	206	10	3.45-3.65	88-93	2.59	66	8.04	204	4.46	113	
10.5	267	13	4.67-4.82	119-123	3.02	77	10.40	264	5.64	143	

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Description	Ga	ıp	
Pitch Diameter		No. Tooth	in	
in.	mm	NO. Teeth		
5.0	127	6	0.150	3.8
6.5	165	8	0.108	2.8
8.1	206	10	0.091	2.3
10.5	267	13	0.074	1.9

Raised Rib							
	in	mm					
Pitch	2.07	52.6					
Minimum Width	15	381					
Width Increments	1.00	25.4					
Opening Sizes (approx.)	-	-					
Open Area	27	'%					
Hinge Style	Clo	sed					
Drive Method	Center/Hir	nge-Driven					
Product	Notes						
 a belt. Increased module thickness a superior belt strength and inc. Shuttleplug™ self-closing roc. Uses headless rods. Split sprockets available for e. Made of engineered resin for chemicals and temperature c. Minimal back tension required. More robust transfers utilize t fingers. 	and rod diame creases belt life d retention syst easy installation increased res cycling. d. taller belt ribs a						
Additional Information			(52.6 mm) (52.6 mm) (9.4 mm)				
 See "Belt Selection Process" (page 5) See "Standard Belt Materials" (page 9) See "Special Application Belt Materials" (page 9) See "Friction Factors" (page 13) 			0 0 0 1.00" NOM. (25.4 mm)				
		Belt	ata				

Beit Data								
Belt Material	Standard Rod Material 0.38 (9.7 mm)	BS Belt Strengt		BeltTemperature RangeStrength(continuous)		W	Belt Weight	
		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m ²	
Enduralox™ Polypropylene	Polypropylene	4000	5952	34 to 220	1 to 104	3.90	19.04	

253

Sprocket and Support Quantity Reference									
Belt Wic	Ith Range ^a	Minimum Number of	W	/earstrips					
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway					
15	381	3	3	3					
18	457	3	3	3					
24	610	5	4	3					
30	762	5	5	4					
36	914	7	5	4					
42	1067	7	6	5					
48	1219	9	7	5					
54	1372	9	7	6					
60	1524	11	8	6					
72	1829	13	9	7					
84	2134	15	11	8					
96	2438	17	12	9					
120	3048	21	15	11					
144	3658	25	17	13					
For Other Widths, Use Odd Number of Sprockets ^c at Maximum 6 in. (152 mm) & Spacing		ld Number of Sprockets ^c at 52 mm)	Maximum 9 in. (229 mm)	Maximum 12 in. (305 mm) & Spacing					

a. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. If the actual width is critical, consult Customer Service.

b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.

c. The center sprocket should be locked down. See Locked Sprocket Location chart in the Installation Instruction Guidelines or call Customer Service for lock down location.

	Split wetal Sprocket										
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	Available E	Bore Size	s	
Teeth (Chordal	Pitch	Pitch	Outer	Outer	Hub Width	Hub Width	U.S.	Sizes	Metric	: Sizes	- 0 10 1.
Action)	Dia. 111.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm	
10 (4.89%)	6.7	170	7.0	177	1.7	43		2.5		60	Non of the
15 (2.19%)	10.0	254	10.3	262	1.7	43		3.5			CALL ES
16 (1.92%)	10.6	269	11.0	279	1.7	43	3.5	3.5		90	

255

Two-Material Finger Transfer Plates

Availabl	e Widths	Number of	Available Materials
in.	mm	Fingers	Available Materials
6.0	152	18	Glass-Filled Thermoplastic Fingers, Acetal Backplate

Note: Plates provide high strength fingers combined with a low-friction back plate.

Note: Low-friction back plate is permanently attached to the two high-strength finger inserts.

Note: Eliminates product transfer and tipping problems. The 18 fingers extend between the belt's ribs allowing a smooth continuation of the product flow as the belt engages its sprockets.

Note: Easily installed on the conveyor frame with the shoulder bolts supplied. Caps snap easily into place over the bolts, keeping foreign materials out of the slots.

Note: The extended back plate has three attachment slots. Mounting hardware is sold separately and includes stainless steel oval washers and bolts. Plastic bolt covers are also included.

	Dime	ensional	Requirements for Finger Transfer Plate Installation		
	Two-N	laterial	Two-material glass handling finger transfer plate shown		
	in.	mm			
F	3.50	89	H		
G	0.31	8	2.25" (57 mm)		
Н	9.56	243			
-	5.91	150			
J	3.00	76			
К	1.45	37			
L	5.50	140			
Spacing at ambient	Endural	ox™ PP			
temperature	5.98	151.9	 1 - SPACING 2 - 0.5" (13 mm) RADIUS (LEADING EDGE OF FRAME MEMBER) 3 - FRAME MEMBER 		

Self-Clearing Finger Transfer Plates^a

Availab	e Width	Number of	Available Materials
in.	mm	Fingers	Available iviaterials
6	152	18	Glass-Filled Thermoplastic

Note: The Self-Clearing Finger Transfer System consists of a finger transfer plate and a transfer edge belt that are designed to work together. This system eliminates the need for a sweeper bar, a pusher arm, or wide transfer plates. Transfers are smooth and 100% self-clearing, making right angle transfers possible for all container types. The Self-Clearing Finger Transfer System is ideal for warmer/cooler applications with frequent product changeovers and is compatible with any series and style of Intralox belt on the discharge and infeed conveyors. This system is bi-directional allowing the same transfer belt to be used for both left-hand and right-hand transfers.

0101010

्या

Note: Self-Clearing Finger Transfer System is capable of transferring product to and from Intralox Series 400, Series 1200 and Series 1900 Raised Rib belts.

Note: Smooth, flat top surface provides excellent lateral movement of containers.

Note: Robust design for durability in tough glass applications.

Note: Finger Transfer Plates are easily installed and secured to mounting plates of any thickness with stainless steel bolts and oval washers that allow movement with the belt's expansion and contraction.

Note: Stainless steel hardware is sold separately.

Note: Self-Clearing Transfer Edge Belt is molded with robust tracking tabs for belt support in heavy side-loading conditions. It has fully flush edges, headed rod retention system and nylon rods for superior wear resistance.

a. Licensed under Rexnord U.S. Patent Nos. 7,314,130 and 7,448,490

Dimensional Requirements for Self-Clearing Finger Transfer Plate Installations^a

H - 1.75" (44.5 mm)

> 0.59" (15.0 mm

	Self-C	learing		-
	in.	mm		
F	5.25	133.4		(37.1 mm) U
G	1.15	29.2		J
Н	8.05	204.5		K C
I	5.93	150.6		
J	2.92	74.2		G
к	1.51	38.4		
L	2.71	68.8		2 —
Spacing at ambie	ent tempera			
PP	5.98 in.	151.9 mm	1 - Spacing	
			2 - Frame Member	

a. Licensed under Rexnord U.S. Patent Nos. 7,314,130 and 7,448,490

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

SERIES 1900

Spr	ocket Des	scription	Α		E	3	(2		E
Pitch D	Diameter	No. Tooth	Range (Botto	m to Top)	in	mm	in	mm	in	mm
in.	mm	NO. TEEM	in.	mm					. .	
	SERIES 1900 RAISED RIB									
6.7	170	10	2.69-2.85	68-72	2.82	72	7.08	180	4.29	109
10.0	254	15	4.37-4.48	111-114	3.52	89	10.33	262	5.91	150
10.6	269	16	4.71-4.81	120-122	3.65	93	11	279	6.25	159

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Description	Ga	р		
Pitch Diameter		No. Teeth	in		
in.	mm	No. reem			
6.7	170	10	0.164	4.2	
10.0	254	15	0.109	2.8	
10.6	269	16	0.102	2.6	

	-		
	ransver	se Rolle	r Top™ (TRT™)
	in	mm	
Pitch	2.00	50.8	and the
Minimum Width	8	203	
Width Increments	2.00	50.8	
Opening Sizes (approx.)	0.43 x 0.53	10.9 x 13.5	SEEL DO N
Open Area	17.	8%	
Hinge Style	Ор	en	a constant of
Drive Method	Cer	nter	A STATE
Product	Notes		
 stock status before designi a belt. Acetal rollers, plastic axles Designed for 90-Degree Tran Roller diameter 0.95 in (24.1) Roller length 0.825 in (20.9 m) Standard roller indent 0.26 in 2 in (50.8 mm) roller spacing, Belt length must be adjusted Uses headless rods. Sprockets have large lug teet Robust design offers exceller durability, especially in tough applications S4400 alternating tooth glass recommended for this belt. Contact Intralox Customer Se design guidelines. 	ng equipment asfers mm) (6.6 mm) alternating in 4 in (2 row) th. the belt and spro material-hance filled split spro ervice for detail		
	nformatio		
 See Belt Selection Process" See "Standard Belt Materials See "Special Application Belt See "Friction Factors" (page 	(page 5) " (page 9) " <i>Materials"</i> (pa 13)		

	Belt D	ata					
Belt Material	Standard Rod Material Ø 0.240 in (6.1 mm)	BS	Straight Belt Strength	Temperatu (contin	ire Range uous)	W	Belt Weight
		lb./ft.	kg/m	°F	°C	lb./ft. ²	kg/m²
Polypropylene	Nylon	2200	3270	34 to 200	1 to 93	2.25	10.98

		Sprocket a	nd Support Quantity Refere	ence
Belt Wid	dth Range ^a	Minimum Number of	٧	Vearstrips
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway
10-14	254-356	2	3	2
16-18	406-457	3	3	3
20-24	508-610	3	4	3
26	660	4	4	3
28-32	711-813	4	5	3
34-36	864-914	5	5	4
38-42	965-1067	5	6	4
44	1118	6	6	5
46-50	1168-1270	6	7	5
52-54	1321-1372	7	7	5
56-60	1422-1524	7	8	6
62	1575	8	8	6
64-68	1626-1727	8	9	6
70-72	1778-1829	9	9	6
74-78	1879-1981	9	10	7
80	2032	10	10	7
Maximum 9 i	Iaximum 9 in. (229 mm) CL Spacing, Minimum indent from Flush Edge		Maximum 9 in. (229 mm) CL Spacing	Maximum returnway spacing 12 in.

If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 2.00 in. (51 mm) increments beginning with minimum width of 10 in. (254 mm). If the actual width is critical, consult Customer Service. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications. a.

b.

				Glass	; Fille	d Nylo	on Alte	rnating	J Toot	h Split
No. of Teeth	Nom. Pitch	Nom. Pitch	Nom. Outer	Nom. Outer	Nom. Hub Width	Nom. Hub Width	U.S.	vailable E Sizes	Bore Sizes Metric	s Sizes
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in	Square in	Round mm	Square mm
10 (4.89%)	6.5	165	6.7	170	1.9	48		1.5 2.5		40 60
12 (3.41%)	7.8	198	8.0	198	1.9	48		1.5 2.5		40 60
16 (1.92%)	10.3	262	10.5	267	1.9	48		1.5 2.5		40 60

a. Contact Customer Service for lead times.

Nylon Alternating Tooth Split Sprocket^a

No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	Available E	Bore Size	s	
Teeth (Chordal	Pitch	Pitch	Outer	Outer	Hub Width	Hub Width	U.S.	Sizes	Metric	: Sizes	
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in	Square in	Round mm	Square mm	7
8 (7.61%)	5.3	135	5.5	140	1.9	48		1.5		40	1
16 (1.92%)	10.3	262	10.5	267	1.9	48		3.5			

a. Contact Customer Service for lead times.

					Ny	lon A	lternat	ing To	oth Sp	rocket	а
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.		Available I	Bore Sizes	S	
Teeth (Chordal	Pitch	Pitch	Outer	Outer	Hub Width	Hub Width	U.S.	Sizes	Metric	Sizes	
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in	Square in	Round mm	Square mm	
6 (13.40%)	4.0	102	4.2	107	1.9	48		1.5		40	

a. Contact Customer Service for lead times.

intralox

				Gla	ass Fil	led Ny	ylon Al	Iternat	ing To	oth Sp	ocket ^a
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.		Available I	Bore Sizes	S	
Teeth (Chordal	Pitch Dia in	Pitch	Outer Dia in	Outer Dia	Hub Width	Hub Width	U.S.	Sizes	Metric	: Sizes	
Action)	Dia: III	mm	Dia. III	mm	in	mm	Round in	Square in	Round mm	Square mm	
10 (4.89%)	6.5	165	6.5	165	2.0	51		1.5 2.5		40 60	
											Contraction of the second seco
12 (3.41%)	7.8	198	7.8	198	2	51		1.5 2.5		40 60	
16 (1.92%)	10.3	262	10.4	264	2	51		2.5		60	

a. Contact Customer Service for lead times.

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

Conveyor frame dimensions are established using the top of the roller as the top of the belt and the bottom of the module as the bottom of the belt. "B" dimension is based on a 0.5 in. (12.7 mm) thick carryway.

Spr	rocket Description		Α	E	3	(2	l	Ε	
Pitch D	Diameter	No. Tooth	Range (Bottor	m to Top)	in	mm	in	mm	in	mm
in.	mm		in.	mm						
4.0	102	6	1.43-1.70	36-43	1.85	47	4.40	112	2.76	70
5.3	135	8	2.12-2.32	54-59	2.24	57	5.64	143	3.38	86
6.5	165	10	2.79-2.95	71-75	2.39	61	6.90	175	4.01	102
7.8	198	12	3.45-3.58	88-91	2.64	67	8.16	207	4.64	118
10.3	262	16	4.75-4.85	121-123	3.10	79	10.70	272	5.91	150

		Flush	Grid
	in	mm	
Pitch	2.00	50.8	
Minimum Width	5	127	
Width Increments	1.00	25.4	
Opening Sizes (approx.)	0.24 x 0.23	6.1 x 5.8	
Open Area	35	%	
Hinge Style	Ор	en	
Drive Method	Center	Driven	
Product	Notes		a far
 Smooth upper surface and straig product movement. Uses headless rods. Sprockets have large lug teeth. Opening size prevents 1/4 inch or through belt surface. 	htforward design	n provides free	
	iformation		
 See "Belt Selection Process" (pa See "Standard Belt Materials" (pa See "Special Application Belt Ma See "Friction Factors" (page 13) 	ige 5) age 9) aterials" (page 9)	1	2.0" (50.8 mm) (50.8

	Belt D	ata					
Belt Material	Standard Rod Material Ø 0.24 in (6.1 mm)	BS	Belt Strength	Temperatu (contin	ure Range luous)	W	Belt Weight
		lb./ft.	kg/m	°F	°C	lb./ft. ²	kg/m²
Polypropylene	Nylon	2400	3572	34 to 220	1 to 104	1.54	7.52
Polypropylene	Polypropylene	2200	3274	34 to 220	1 to 104	1.54	7.52

		Flat	Тор
	in	mm	
Pitch	2.00	50.8	al ale
Minimum Width	5.00	127	and the second states of the
Width Increments	1.00	25.4	C II C III I Dillow
Opening Sizes (approx.)	—	—	Aller and a second and a second and a second and a second
Open Area	0'	%	
Hinge Style	Clo	sed	
Drive Method	Center	-Driven	and a second a second
Produc	t Notes		and a set of the
 Uses headless rods. Available in yellow edges. Sta easy to distinguish the moving Wheel chocks are available. S used to mount the wheel choc Fully flush edges with Slidelox Slidelox is a glass-reinforced p 	ggered yellow edg belt from the stati eries 4500 Flat To ks. ® rod retention fea polypropylene.	les make it ionary floor. ip modules ar ature.	
Additional	Information		
 See "Belt Selection Process" (See "Standard Belt Materials" See "Special Application Belt See "Friction Factors" (page 1) 	page 5) (page 9) <i>Materials"</i> (page 9 3))	2.0" NOM. (50.8 mm) (50.8 mm)

	Belt D	ata					
Belt Material	Standard Rod Material Ø 0.24 in (6.1 mm)	BS	Belt Strength	Temperatu (contin	ire Range uous)	W	Belt Weight
		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
Acetal	Nylon	4400	6548	-50 to 200	-46 to 93	3.07	14.96
HSEC Acetal	Nylon	4100	6101	-50 to 200	-46 to 93	3.08	15.04
AC/EC	Nylon	4400	6548	-50 to 200	-46 to 93	3.08	15.04
Polypropylene	Nylon	3900	5804	34 to 200	1 to 93	1.97	9.62
Polypropylene	Polypropylene	2500	3720	34 to 220	1 to 104	1.85	9.03
Easy Release Traceable Polypropylene	Nylon	2500	3720	34 to 220	1 to 104	2.26	11.03

		Non	Skid
	in	mm	
Pitch	2.00	50.8	and the second sec
Minimum Width	5.00	127	
Width Increments	1.00	25.4	A CERCE AND
Opening Sizes (approx.)	—	—	
Open Area	0		
Hinge Style	Clo	osed	
Drive Method	Cente	r-Driven	
Product	t Notes		
 increase safety. Available in yellow edges. Stag easy to distinguish the moving Wheel chocks are available. Se used to mount the wheel chock Edges have Flat Top surface (n is 2.0 in (50 mm) from edge of I Fully flush edges with Slidelox@ Slidelox is a glass-reinforced point Uses headless rods. 	gered yellow edg belt from the stat ries 4500 Flat To s. o tread pattern). belt. or od retention fe olypropylene.	ges make it tionary floor. op modules are Flat Top inden ature.	
Additional I	nformation		
 See "Belt Selection Process" (p See "Standard Belt Materials" (See "Special Application Belt M See "Friction Factors" (page 13) 	page 5) page 9) <i>faterials</i> " (page 9) 9)))	2.0" NOM. (50.8 mm) (50.8 mm)

Belt Data											
Belt Material	Standard Rod Material Ø 0.24 in (6.1 mm)	BS	Belt Strength	Temperatu (contin	ire Range uous)	W	Belt Weight				
		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²				
Acetal	Nylon	4400	6548	-50 to 200	-46 to 93	3.09	15.09				
HSEC Acetal	Nylon	4100	6101	-50 to 200	-46 to 93	3.10	15.14				
AC/EC	Nylon	4400	6548	-50 to 200	-46 to 93	3.10	15.14				
Polypropylene	Nylon	3900	5804	34 to 200	1 to 93	1.98	9.67				
Polypropylene	Polypropylene	2500	3720	34 to 220	1 to 104	1.86	9.08				
FR Anti-Static	Nylon	2000	2976	-50 to 150	-46 to 66	3.00	14.65				

Belt Data											
Belt Material	Standard Rod Material Ø 0.24 in (6.1 mm)	BS	Belt Strength	Temperatu (contin	ire Range uous)	W	Belt Weight				
		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²				
Acetal	Nylon	4400	6548	-50 to 200	-46 to 93	3.39	16.55				
HSEC Acetal	Nylon	4100	6101	-50 to 200	-46 to 93	3.39	16.55				
AC/EC	Nylon	4400	6548	-50 to 200	-46 to 93	3.39	16.55				

Sprocket and Support Quantity Reference										
Belt Wid	dth Range ^a	Minimum Number of	N N	Vearstrips						
in.	mm	Sprockets Per Shaft ^b	Carryway	Returnway						
2	51	1	2	2						
4	102	1	2	2						
6	152	2	2	2						
7	178	2	2	2						
8	203	2	2	2						
10	254	2	3	2						
12	305	3	3	2						
14	356	3	3	3						
15	381	3	3	3						
16	406	3	3	3						
18	457	3	3	3						
20	508	5	4	3						
24	610	5	4	3						
30	762	5	5	4						
32	813	7	5	4						
36	914	7	5	4						
42	1087	7	6	5						
48	1219	9	7	5						
54	1372	9	7	6						
60	1524	11	8	6						
72	1829	13	9	7						
84	2134	15	11	8						
96	2438	17	12	9						
120	3048	21	15	11						
144	3658	25	17	13						
For Other N	Widths, Use Od Iaximum 6 in. (1	dd Number of Sprockets ^c at 52 mm)	Maximum 9 in. (229 mm)	Maximum 12 in. (305 mm) Ç Spacing						

a. If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts are available in 1.00 in. (25.4 mm) increments beginning with minimum width of 5 in. (127 mm). If the actual width is critical, consult Customer Service.
 b. These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications.

c. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Retainer Rings/Center Sprocket Offset chart on page 410 for lock down location.

Short dash line: Flush Grid-Dual Tooth

	Enduralox Polypropylene Composite Split Sprocket ^{ab}												
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	F	Available E	3ore Size	S			
Teeth (Chordal	Pitch Dia in	Pitch	Outer Dia in	Outer Dia	Hub Width	Hub Width	U.S.	Sizes	Metric	: Sizes			
Action)	Did	mm	Dia	mm	in	mm	Round in	Square in	Round mm	Square mm			
10 (4.89%)	6.5	165	6.7	170	1.5	38		1.5 2.5		40 60			
12 (3.41%)	7.8	198	8	203	1.5	38		1.5 2.5		40 60			
16 (1.92%)	10.3	262	10.5	267	1.5	38	2.5 ^c 3.5 ^c	2.5 ^c	60 ^c 90 ^c	60 ^c			

MIR

a. Contact Customer Service for lead times.

b. Hardware made from 316 Stainless Steel

c. Bores are over-sized

Glass Filled Nylon Split Sprocket ^a												
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	Available E	Bore Size	S		
Teeth (Chordal	Pitch Dia. in	Pitch Dia	Outer Dia. in	Outer Dia	Hub Width	Hub Width	U.S.	Sizes	Metric	c Sizes		
Action)	2.01.111	mm	2.0.11	mm	in	mm	Round in	Square in	Round mm	Square mm		
10 (4.89%)	6.5	165	6.7	170	1.45	37		1.5 ^b 2.5		40 ^b 60		
12 (3.41%)	7.8	198	8	203	1.45	37		1.5 ^b 2.5 3.5		40 ^b 60 90		
16 (1.92%)	10.3	262	10.5	267	1.45	37		2.5 3.5		60 90		

a. b.

Contact Customer Service for lead times. 1.5 in and 40 mm bores have a hub width of 1.95 in (50 mm).

268

SECTION 2

SECTION 2

4500

						Ν	ylon S	plit Sp	rocke	t a
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	Bore Size	S
Teeth (Chordal	Pitch Dia in	Pitch	Outer Dia in	Outer	Hub Width	Hub Width	U.S.	Sizes	Metric	: Sizes
Action)	Dia. III	mm	Dia. III	mm	in	mm	Round in	Square in	Round mm	Square mm
16 (1.92%)	10.3	262	10.5	267	1.9	38		1.5		40

a. Contact Customer Service for lead times.

	Glass Filled Nylon Sprocket ^a											
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	Available E	Bore Size	S		
Leeth (Chordal	Pitch Dia in	Pitch	Outer Dia in	Outer	Hub Width	Hub Width	U.S.	Sizes	Metric	: Sizes		
Action)	Dia: III	mm	Dia. III	mm	in	mm	Round in	Square in	Round mm	Square mm		
10 (4.89%)	6.5	165	6.5	165	2	51		1.5 2.5		40 60		
12 (3.41%)	7.8	198	7.8	198	2	51		1.5 2.5		40 60		

a. Contact Customer Service for lead times.

	Enduralox Polypropylene Composite Dual Tooth Split Sprocket ^{ab}												
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	Bore Size	S			
Teeth (Chordal	Pitch Dia in	Pitch Dia	Outer Dia in	Outer Dia	Hub Width	Hub Width	U.S.	Sizes	Metric	c Sizes			
Action)	Dia: III	mm	Bia. III	mm	in	mm	Round in	Square in	Round mm	Square mm	83778		
16 (1.92%)	10.3	262	10.5	267	1.5	38		3.5 ^c		90 ^c			
											A IT SA		

a. Contact Customer Service for lead times. b. Hardware made from 316 Stainless Steel

c. Bores are over-sized

Finger Transfer Plates

Available	e Widths	Number of	Available Materials		
in	mm	Fingers			
6	152	18	Glass-Filled Thermoplastic Fingers, Acetal Back Plate		

Note: For use with Series 4500 Non-Skid Raised Rib belt styles. Note: Fingers extend between the ribs to prevent hardware from dropping off the end of the conveyor.

Note: Plastic shoulder bolts and bolt covers are included for installing the standard two-material finger transfer plates.

Note: Easily installed on the conveyor frame.

Note: Available in two different configurations:

Standard - long fingers with a short back plate

Standard Extended Back - long fingers with an extended back plate

The short back plate has two attachment slots and the extended back plate has three attachment slots.

SECTION 2

Flat Top Wheel Chock

Available Materials	le Width	Availabl	Available Height				
Available iviaterials	mm	in	mm	in			
UHMW	127	5	41	1.6			
UHMW	127	5	50	1.97			

Note: Fasteners and modified S4500 Flat Top modules are required. Note: The fastener torque specification is 40-45 in.-lbs (4.5-5 N-m). Note: The minimum indent from the edge of the belt (without wheel chocks) is 2.0 in (50 mm).

	Insert Nut	5
Available Base Belt Style - Material	Available Insert Nut Sizes	
Series 4500 Flat Top - Acetal	6 mm –1 mm 8 mm–1.25 mm	
Series 4500 Flat Top - Polypropylene	6 mm –1 mm 8 mm–1.25 mm	
Note: Insert Nuts easily allow the attachment of fixt Note: Fasteners and modified Series 4500 Flat Top Note: The fastener torque specification is 40-45 in. Note: Square insert nuts are provided. The square nut stays in place when the bolt is tightened or loos Note: Attachments connected to more than one row rotation around the sprockets. Note: Sprockets cannot be located in-line with the in Intralox Customer Service for sprocket and insert n	tures to the belt. b modules are required. -Ibs (4.5-5.0 N-m). flange ensures that the insert sened. w must not prohibit belt insert nut locations. Contact ut placement.	

from the belt edge; 1.0 in (25 mm) minimal distance between nuts along the length of the belt. Contact Intralox Customer Service for assistance with insert nut placement.

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

Conveyor frame dimensions are established using the top of the roller as the top of the belt and the bottom of the module as the bottom of the belt. "B" dimension is based on a 0.5 in. (12.7 mm) thick carryway.

SERIES 4500

Spr	ocket Des	scription	A	B		3	С		E	
Pitch Diameter		No Teeth	Range (Botto	in	mm	in	mm	in	mm	
in.	mm	NO. TEEIIT	in.	mm	111.					
			FLUSH	I GRID, FLA	ГТОР					
6.5	165	10	2.77-2.92	70-74	2.40	61	6.47	164	3.61	92
7.8	198	12	3.46-3.59	88-91	2.63	67	7.80	198	4.28	109
10.3	262	16	4.71-4.81	120-122	3.15	80	10.25	260	5.50	140
				NON SKID						
6.5	165	10	2.77-2.92	70-74	2.40	61	6.56	167	3.70	94
7.8	198	12	3.46-3.59	88-91	2.63	67	7.89	200	4.36	111
10.3	262	16	4.71-4.81	120-122	3.15	80	10.34	263	5.59	142
NON SKID RAISED RIB										
6.5	165	10	2.77-2.92	70-74	2.40	61	6.67	169	3.81	97
7.8	198	12	3.46-3.59	88-91	2.63	67	8.00	203	4.48	114
10.3	262	16	4.71-4.81	120-122	3.15	80	10.45	265	5.70	145

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Descriptio	n	Ga	р
Pitch D	iameter	No. Tooth	in	mm
in.	mm			
6.4	163	10	0.160	4.1
7.8	198	12	0.130	3.3
10.1	257	16	0.100	2.5

		Flush	Grid
	in	mm	
Pitch	1.01	25.7	
Minimum Width	6	152.4	
Width Increments	1.00	25.4	
Opening Sizes (approx.)	0.7 x 0.5	17.8 x 12.7	
Open Area	58	%	
Hinge Style	Clos	sed	
Drive Method	Center (prefe Driv	erred)/Hinge- /en	and
Product	Notes		the test of te
 stock status before designi a belt. Easy to retrofit from existing s conveyor changes Split steel sprockets available easier replacement PVDF material is a polymer p washer environments Uses headless rods. Open surface enhances sprat performance and/or air flow of depending on the application 	ng equipment steel belting wit e; longer sproc proven for long y-through clea cooling perform		
Auditional II	normatio	on	
 See "Belt Selection Process" See "Standard Belt Materials See "Special Application Belt See "Friction Factors" (page " 	(page 5) " (page 9) <i>Materials</i> " (pa 13)	ge 9)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

	Belt D	ata					
Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	BS	Belt Strength	Temperatu (contin	ire Range uous)	W	Belt Weight
		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²
PVDF	PVDF	1000	1490	34 to 200	1 to 93	1.57	7.64
Polypropylene	Polypropylene	750	1120	34 to 220	1 to 104	0.82	4.00
Acetal	Polypropylene	900	1340	34 to 200	1 to 93	1.14	5.57

273

Sprocket and Support Quantity Reference

Belt Wid	ith Range ^a	Minimum Number of	W	/earstrips
in.	mm	Sprockets Per Shaft ^o	Carryway	Returnway
12	305	3	2	Minimum 3 in. (76.2 mm) diameter rollers.
24	610	6	4	
36	914	9	6	
48	1219	12	8	
60	1524	15	10	
72	1829	18	12	
84	2134	21	14	
96	2438	24	16	
For Other M	Widths, Use Od Iaximum 4 in. (10	ld Number of Sprockets ^c at <mark>02 mm) </mark>		

If your belt width exceeds a number listed in the table, please refer to the sprocket and support material minimums for the next larger width range listed. Belts a. are available in 1.00 in. (25.4 mm) increments beginning with minimum width of 6 in. (152.4 mm). If the actual width is critical, consult Customer Service.

b.

These are the minimum number of sprockets. Additional sprockets may be required for heavily loaded applications. The center sprocket should be locked down. With only two sprockets, fix the sprocket on the drive journal side only. See Center Sprocket Offset chart for lock c. down location.

V = ft/min (m/min) T = number of teeth

L = ft (m)

Divide belt speed "V" by the shaft C distance "L". Strength Factor is found at intersection of speed/length ratio and appropriate sprocket line. See page 20 for more information.

							Split N	letal S	Sprocket	а
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	Bore Sizes	
Teeth (Chordal	Pitch	Pitch	Outer	Outer	Hub	Hub Width	U.S. Si	zes	Metric S	izes
Action)	in.	mm	in.	mm	in.	mm	Round in.	Square	Round mm	Square
20	6.5	165	6.5	165	1.7	43	2-3/16	2.5		
(1.23%)							2-7/16			
							2-11/16 3-7/16			
25	8.1	206	8.1	206	1.7	43	2-7/16	2.5		
(0.8%)							2-11/16 3-7/16			

a. Contact Customer Service for lead times.
2	7	5

						UHM	N Polyet	hylene	e Split S	prock								
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	Bore Sizes									
Teeth (Chordal	Pitch	Pitch	Outer	Outer	Hub	Hub Hub	Hub Hub	Hub Hub	Hub Hub		Hub Hub	Hub Hub	Hub Hub	Hub Hub Width Width	U.S. Si	zes	Metric S	Sizes
Action)	in.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm								
40 (0.31%)	12.9	328	13.0	330	1.48	38	2-7/16 2-11/16 3-7/16		60									

a. Contact Customer Service for lead times.

	Nylon FDA Split Sprocket ^a										
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	Bore Sizes		
Teeth (Chordal	Pitch Dia	Pitch	Outer Dia	Outer	Hub Width	Hub Width	U.S. Si	zes	Metric S	Sizes	
Action)	in.	mm	in.	mm	in.	mm	Round in.	Square in.	Round mm	Square mm	3
13 (2.90%)	4.2	107	4.2	107	1.48	38	1-1/4	1-1/2		40	3
19 (1.38%)	6.1	155	6.1	155	1.48	38	1-1/4	1-1/2		40	

a. Contact Customer Service for lead times.

	Acetal Sprocket ^a																
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Av	vailable E	Bore Sizes								
Teeth (Chordal	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S. Sizes		U.S. Sizes		U.S. Sizes		U.S. Sizes		Metric S	izes	
Action)	in.	mm	in.	mm	in.	mm	Round in.	Square in	Round mm	Square							
20 (1.23%)	6.5	165	6.5	165	.75	19		1-1/2									
											the second						

a. Contact Customer Service for lead times.

a. Contact Customer Service for lead times.

Flat Top Base Flights (No-Cling)

Available F	light Height	Avoilable Materiala
in.	mm	Avaliable Ivialerials
3	76	Polypropylene, Nylon

Note: Flights can be cut down to custom heights with a minimum height of 0.25 in (13 mm).

Note: Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.

Note: No-Cling vertical ribs are on both sides of the flight.

Note: The minimum indent (without sideguards) is 2.0 in. (50.8 mm).

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C" and "E" listed below should be implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

Conveyor frame dimensions are established using the top of the roller as the top of the belt and the bottom of the module as the bottom of the belt. "B" dimension is based on a 0.5 in. (12.7 mm) thick carryway.

Sprocket Description		А	В		С		E			
Pitch D	Diameter	No Tooth	Range (Botto	m to Top)	in	mm	in	mm	in	mm
in.	mm		in.	mm					· · · ·	
	SERIES 9000 FLUSH GRID									
3.3	84	10	1.30-1.38	33-35	1.65	42	3.26	83	1.95	50
4.2	107	13	1.80-1.86	46-47	1.85	47	4.22	107	2.42	61
6.1	155	19	2.78-2.82	71-72	2.23	57	6.14	156	3.38	86
6.5	165	20	2.94-2.98	75-76	2.35	60	6.46	164	3.54	90
8.1	206	25	3.75-3.78	95-96	2.63	67	8.06	205	4.34	110

Dead Plate Gap

Where there is a transfer point from a belt without finger transfer plates to a dead plate, there should be a gap between the surfaces to allow for the chordal action of the belt. As the belt engages its sprockets, chordal action causes the modules to move past a *fixed* point (the tip of the dead plate) with *varying* clearances. The table below shows the minimum amount of gap which occurs at the "low point" of the modules if the tip of the dead plate just comes in contact with the "high point" as the modules pass.

In some installations it may be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which may present tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in. (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 in. (0.8 mm) below the belt surface for product transfer off the belt.

	Sprocket Description	Gap			
Pitch D	liameter	No. Tooth	in	mm	
in.	mm	NO. Teeth			
3.3	84	10	0.081	2.1	
4.2	107	13	0.061	1.5	
6.1	155	19	0.042	1.1	
6.5	164	20	0.040	1.0	
8.1	205	25	0.032	0.8	

	Flat Top									
	in	mm								
Pitch	3.0	76								
Minimum Width	5.9	150	A DIA TOTOLO TOTOLO							
Maximum Width	153.5	3900								
Width Increments	0.98	25								
Opening Sizes (approx.)	-	-								
Open Area	0'	%								
Hinge Style	Clo	sed	0000000							
Drive Method	Center/Hir	nge-Driven								
Product	Notes		0 600							
 status before designing equip Smooth, closed upper surface Available in high-strength electri has a surface resistivity of 10⁵ o Available in yellow edges. Stagg easy to distinguish the moving b Wheel chock attachments are an Fully flush edges with Slidelox® Slidelox® is an acetal copolyme Uses headless rods. 	ment or orderin cally-conductive hms per square ered yellow edg elt from the stati vailable rod retention fea									
Additional Information										
 See "Belt Selection Process" (pa See "Standard Belt Materials" (p See "Special Application Belt Ma 	age 5). age 9). aterials" (page 9	(17.8 mm) (17.8 mm) (17.8 mm) (17.8 mm) (35.6 mm) (35.6 mm)								

Belt Data										
Belt Material	Standard Rod Material Ø 0.50 in. (12.7 mm)	BS	Belt Strength	Temperatu (contin	re Range luous)	W	Belt Weight			
		lb/ft	kg/m	°F	°C	lb/ft ²	kg/m²			
Acetal	Nylon	10,000	14,882	-50 to 200	-46 to 93	6.36	31.05			
HS EC Acetal	Nylon	8,000	11,905	-50 to 200	-46 to 93	6.36	31.05			

279